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1 have proposed in [3] the following problem: do there exist non-
constant polynomials f(x) and g(y) such that f(x)—g(y) is reducible
over the complex field and is neither of the form

(1) a(b(x))—ale(y)),
nor of the form
AT, (b(x))+ AT (e(y)),

where a, b, ¢ are polynomials, the degree of a is greater than 1, A is
a constant and

T,(z) = cos(4arccosz) = 8z4~822-|¥1

(for earlier results on this topic see [1])?
Recently B. J. Birch, J. W. S. Cassels and M. Guy have solved this
problem in the affirmative by finding the following example:

f(®)—g(y) = &7 — TAtwd+ (4 — A) twt + (144 — 35) 2% —
— (8A+10) 1224 (83— A) 12+ T (32+ 2) %) w —
— Y+ Tuty®+ (4 —p)ty* — (14— 35) P y* —
— (8u+10) L2y —((3— p) 2+ T(3u+2) %)y — 763
= [@® 4 A’y — pary® — y> — (344 2)tw + (Bu+ 2)ty + 1] ¥
X [t — APy — wry?— pwy® + Yyt 2 (u— 2) te? — Tiey +
+2(A—p)ty* + (3—A)le— (3 — u)ty — Tt*].

In this example, ¢ is a parameter, 1 = (1 —H/———T)/Z v i = (1—1/-—7)/2.
Since A/p is irrational, the coefficients of f and ¢ are not all rational
except for ¢ = 0, when f(z)—g(y) = «"—y7 is of the form (1). The aim
of the present note is to show that this is necessarily the case if at least
one of the degrees of f and ¢ is a prime. More exactly, we prove the
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THEOREM. Let f and g be mon-constant polynomials with rational
coefficients and let the degree of f be a prime, say p. Then f(x)—g(y) is
reductble over the complex field if and only if ¢(y) = f(c(y)) and either ¢
has rational coefficients or

(2) f@)—g(y) = A(x+ a)’— Bd(y)",

where d has rational coefficients and A, B and a are rationals.

COROLLARY. Under the assumptions of the theorem, the case (2)
being excepied, f(x)—g(y) s reducible over the complex field only if it is
reducible over the rational field.

In the sequel, we shall denote by C the complex field, by @ the
rational field, and, for any given field K, by |K| its degree and by K[z]
the ring of polynomials in # over K. By ¢, is meant the primitive p-th
root of unity. We have

P, _
- LEMMA 1. Let aeQ, a # 0 and ya be a rational root of the equation
D_

2" —a = 0 if there are such roots or any root otherwise. Then (z¥ — a)[(x—V a)

is irreducible over Q(:}ﬁ).
Proof. Setting K = Q(]i}a) we have
(1,p—1) if 123/& is rational,

(1K1, 19 (L)) =

(p,p—1) if ]p/c_t is irrational.
Thus in any case (|K|,[Q((p)|) = 1. Hence
(KQ(Lp)| = |K|1Q(Lp)] = (p—1) | K|

and B
K (EpVa)|l = |K(5)] = |KQ(L)] = (p—1)|K].

Since Cplp/&, is a zero of the polynomial (2" — a) /(w—:[],/&) and (p—1)
is its degree over K, the polynomial is irreducible over K, q.e.d.

LEMMA 2. If polynomials f and ¢ satisfy the conditions of the The-
orem and ¢(y) =f(c(y)), where ¢(y)eCly], then either ¢(y)eQ[y] or (2)
holds.

Proof. Let
D ) q ) r ‘
f@) = Dlawa®™,  gla) = Y hia  o(w) = Y eal
i=0 i=0 7=0

It follows from the identity

” oo = St = Sa S
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that
(4) by = aocf))

and that for each positive j < r the polynomial

g(m) 1 g Ci L._i\p
= (D -«
pby P& e

D;(x)

has the leading coefficient ¢;/¢,. The induction with respect to j shows
that

(5) T (0<j<n).

Thus the leading coefficient of the polynomial D,(x) equal to p,
say, is rational. On the other hand, it follows from (3) that

Cr a, ay
(6) e =—- y O = QCp— .
Co PGy y
Suppose now that (2) does not hold; thus the polynomial
I (x— B ) — a2’
@yp

is non-constant. Let d,a° be its leading term (0 < s < p, d, rational).
The polynomial

P r—1
al . 10:,' g r
f(G(w))—wo(c(w)+aop) —g(w)—bo(% G—Ow ’+Q)

has rational coefficients and the leading coefficient d,c;. Thus e and
since, by (4), b @, we get " = ¢,eQ. It follows by (5) and (6) that
c¢(r)e@)[x]. The proof is complete.

Remark. The method used in the above proof gives the following
more general statement.

Let K be a field of characteristic y and L an arbitrary extension
of K. If f(x), g(@)eK [], c(x) e L[x], g(z) = flc(x)) and y does not divide
the degree of f, then there exist a positive integer q and x, AeL, d(x),
h(z)eK[x] such that

MeK, c¢(z) =M@ —x, fla)=n"n(z+x)7.

The condition
degree of f == 0 (mod yx)

is necessary as is shown by the example:
¥yr=2, K=GF[2], L =GF[4] =K (w),
fl@) =2+, g(@)=a*+1, c@)=0rto.
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Proof of the theorem. The sufficiency of the conditions given
in the theorem follows immediately from the factorization

ﬂ?k (w)
4

n.

D

@) =flew) = @—et) Y

n=1

(e(y)—a)" .

In order to prove the necessity of the conditions we assume with-
out loss of generality that the leading coefficient of f is 1 and that of ¢
is, say, a. Let

(7) F@)—g(y) = hy(@, Yho(@, y) ... ho(x,y)  (r >1)

be the decomposition of f(x)—g(y) into factors irreducible over ¢
with the coefficient of the highest power of x in each hi(x, y) equal to 1.
Since f(x)—g(y) is reducible, it follows from a theorem of Ehrenfeucht
[2] that the degree of g is divisible by p and equals, say, kp, where &k
is an integer. Give x the weight k and y the weight 1 and denote the
highest isobaric part of h;(x, y) by H;(x,y) (1 <i<r). It follows from
(7) that

(8) o’ —ay™ = Hy(x,y)H,(x,y) ... H.(z,v).
D, . g
Let Va be defined as in Lemma 1. Since a—7Vay"|2"—ay™ and
pb,__ 4
z—Vay® is irreducible over O we may assume without loss of generality

that o
(9) o—yVay* | H (2, y).

Suppose that H,(x, y) ;éa;—]l}ﬁyk. In view of the normalization

of hi(x,y), H(x, 1)/(00—:7&) is not a constant. On the other hand, by
(8) we get ‘

P H,(x,1
(10) il Y 1(”’?% Hy(x,1) ... H.(x,1).

D__ D
x—va r—ya

It follows from Lemma 1 that H,(x,1)¢K[x], where K — Q(:}E),
and, a fortiori, h,(x, y)¢ K [x,y]. The field of coefficients of &, is alge-
braic over K, thus there is a polynomial hi(x,y) with coefficients alge-
braically conjugate over K to those of h, such that

hi(a, y) # hi(x,y).

In view of the normalization of h,, the coefficient of the highest
power of x in hy(z, y) equals 1, and since hj(x,y) is irreducible over ¢
it must occur in the factorization (7) as, say, h,. We get

Hi(w7 Z/) - Hz(wy y)y
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where the coefficients of H,(x,y) are algebraically conjugate over K
to those of H,(x,y). By (9) we have

n_
z—Vay"|H,(z, ),
and by (10)
p_| d’"—a

z—ya )
r—ya

which is impossible, since #”—a has no multiple zeros. Therefore

P,
Hl(m1 y) = m_l/a’yka

and, by the definition of H,,

hy(@, y) = x—c(y).

We obtain now from (7) that g(y) = f(c(y)) and the theorem follows
from Lemma 2.

Note added in proof. The following new non-trivial example
of reducibility of f(x) — ¢g(y) has been found by Birch, Cassels and Guy:

o +11 (4, —2,—3u7r,—164, 3u2(1—4), 30ut, — 634,
—20u, 3utv2, —90) (z, 1)°—
—y"'—11 (4, —2,—3%0,—16u, 34%(u—4), 30105,—634,
—2044, 34162, 99) (,1)°
= [(1,—4,—1,1,u,—1) (@, ) +0(2,— 2, —u, 2) (@, y)*—
—20(uy—3, 2) (2, y)2+0(u® 2%) (2, y) —60] X
X [(1, & 0, 2, 7, uy 1) (2, §)8+0(ur,— A3, — 20, u®,—Ac) (2, y)*+
+20(2, 2%, —u®, —p) (2, y)°*—0 (1(204-3), 30, 4(260 —3)) (z, y)*+
+40(—u, 2°) (@, y) +33],

where
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