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BOOLEAN OPERATIONS OVER MEASURE ALGEBRAS
BY

A. KAMBURELIS AND M. KUTYLOWSKI (WROCLAW)

We shall investigate Boolean operations over Boolean algebras with a
measure. In Sections 1 and 2 we describe operations connected with the
forcing theory which applied to measure algebras yield a measure algebra as
a result. In the rest of the paper we give many examples which show that
usual operations like minimal products and limits do not preserve
measurability of an algebra.

The paper was inspired by our Wroclaw forcing seminar led by
Dr. J. Cichon.

0. Introduction.

Definition. We say that B is a measure algebra iff B is a complete
Boolean algebra (c.b.a.) and there is a function u: B — [0, 1] such that:
@) pu() =1,
(i) u is o-additive, i.e. whenever A4 is a countable and pairwise disjoint
family of elements of B then u(} A4) =) u(a),
€A

(iii) u is strictly positive, ie. u(a) =0 iff a= 0.

We call any function u: B — [0, 1] satisfying (i), (ii), (iii) a measure on B.

A typical example: if (¥, %, p) is a measure space with a probability
measure u on a o-field & of subsets of 7 then the factor algebra #/I,,
where I, = {Ae #: u(A) =0}, is a measure algebra. The measure u induces
a measure on #/I,. We will use the same symbol to denote these two
measures. The equivalence classes of elements 4e # in /I, will be denoted
by [A4]

It follows from the Loomis—Sikorski theorem ([6]) that the above case is
in fact general, i.e. for every measure algebra B thére exists a measure space
(&, #, p) such that B is isomorphic to #/I,. Particularly, for a measure
space ([0, 1], Bor ([0, 1]), 4), where 1 is a Lebesgue measure, Bor ([0, 1]) is a
set of Borel subsets of [0, 1], we obtain a measure algebra which wilfl be
denoted by #.

We assume that the reader is familiar with the theory of Boolean-valued
models of set theory ([9], [4], [11]).
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Now let us remind the description of reals in V® for a measure algebra
B, due to D. Scott [7].

For a measure space (£, %, p) such that B = #/I, we denote by M a
family of all measurable functions f: & — R. If fe M, then f determines an
element % V® as follows: we define the Boolean-valued Dedekind cut Q,

Q=1 [ix: f(x) <r}1): re @},
where Q stands for the set of rational numbers. Clearly,
V® = “Q, is a nonempty set of rational numbers bounded from the
right”.
Now pick f%e V® such that
V. # «r0 =supr”.
We state some properties of the mapping f — f° (see [7]):

(1) If a, be R and fe M then
1f°=a] =[ix: f(x) =al],
fa<f°<b] =[{x: a<f(x)<b}].
(2) If f, ge M then
[f°<¢°] =[{x: f(x) <g(x)}], in particular [f*=¢°]=1if f=¢g
almost everywhere.
3) If f1, ..., fneM then
{[/‘10_’_ ‘ee +f;,o=(f1+ e +f,,)o]] =l.

(4) If re V® and [te R] =1 then there exists fe M such that [f° =1]
=1 (by (2), f is determined almost everywhere).

(5) If f, f, ... is a sequence of elements of M, then [lim f;? = f°] = 1 iff
new
limf, =f ae.
We refer to these properties as to the Scott lemma.

1. Iterations. If B is c.b.a. and V® = “D is c.b.a” then we define B+D to
be the iteration algebra of B and D ([9]). We recall this construction which
will be needed in the sequel. Let D = {ae V*: [ae D] = 1}. We can assume
that V® is normalized, ie. a =5 iff [a =b] =1.

Now define Boolean operations on D:

atb=c iff [a+b=c]=1,

ab=c iff [ab=c]=1.
Let B+D be the set D with such defined operations. Denote also by i the
canonical embedding from B into BxD given by the equations:

for beB
liky=1)=b, Tih)=0]= —b.
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TueoreM 1. If B is a measure algebra and V® = “D is a measure
algebra”, then B+D is a measure algebra. Moreover, if u is a measure on B and
i is the canonical embedding of B into BxD then we can construct a measure i
on B+D such that for be B

A(i (b)) = u(b).

Proof. Let B= #/I,, ve V® and V® = “v is a measure on D”. We
define 4 on BxD as follows:

If aeB+D then [ae D] =1. Hence there exists a function f,e M such
that [v(e) =] =1

Let A(a) = [fadu. We are going to show that 4 is a measure on B+D:

(a) 4 is well defined: If a = b then [a = b] =1, hence [v(a) = v(b)] =1
and f, =f, ae, so A(a) = [fodu = | fydu = i(b).

(b) 4 is g-additive: Let {a,: new} < B*D and a,-a, =0 for n# m.

It is proved in [9] that if [a= ) a,] =1 then a= ) a,.

Now we pick g,e M for new such that

[[g,?:v(z ak)]] =1.

k<n

Then by the Scott lemma
gn=2 fa ae and [limg)=v(a)=f"]=1.

k<n

Hence by the Scott lemma g, converges to f, a.c. and monotonically.
By the Lebesgue theorem

lnig [ gndp = [fodu=2(} a,).

ne®

But
lim {g,dpy =1lim ) [f,du=1m Y i@@)= Y Ai(a,).

new k<n new k<n n<w

The rest of the proof is similar and we omit it. 1

COROLLARY. #* AR is a measure algebra.

Moreover, since #xR is atomless and o-generated, R*R = R .

The above corollary is quoted in [12]. The refinement of the proof of
Theorem 1 yields a canonical isomorphism between #x# and an algebra
formed from the measure space ([0, 1] x[0, 1], Bor ([0, 1] x[O0, 1]), 4 x4),
where 4 x4 is a product measure.

2. Boolean factors. We describe some kind of conversion of Theorem 1.
Let B, A be complete Boolean algebras and B be a complete subalgebra
of A. Let us describe the method from [9] of constructing the factor A4:B.
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If G is a canonical generic ultrafilter on B in V* then:
VB = “G={ced: IbeG b <} is a filter on 4”.

Thus V® = “4/G is a Boolean algebra”.

In [9] it is proved that V® = “4/G is cb.a.”. We call the algebra A/G
the Boolean factor of B and 4 and denote this algebra by 4:B. The term
“factor” is used for the reason that B(4:B) >~ A and whenever V® | “D is
c.b.a.” then (BxD):B=D in V&

THEOREM 2. If B is a complete subalgebra of A and A is a measure
algebra then VB = “A:B is a measure algebra.

Proof. Let 4 be the measure on A and put u=AB. Then u is a
measure on B. Now represent B in the form #/I, for some measure space
(Z, #, w). We must find a measure v in the sense of V2 ie. the Boolean
function from A:B into the interval [0, 1] in V2. It is easy to see that

(%) [de(4:B)] =3 [d =[a]].

acA

For ae A we define a function u, on B, and hence on %, as follows:
Ka(b) = A(a-b).

Then u, is a o-additive function on B and pu,(b) < u(b) for beB.
Let g, be the Radon—Nikodym derivative dyu,/du. Thus g,e M and for
Be # we have:

[ 9adp = n,([B)) = A(a-[B)).
B

Now put for aeA4
v([a]) = g2.

The formula (x) ensures that v(d) is defined whenever [de(4:B)] > 0.
We are going to show that v(d) is well defined and that v is really a measure

on A:B.
Let us recall a useful assertion from [9]: if beB and a, ce 4 then

(»%) b<[lal=[c]] iff ba=b-c.

(@) v is well defined: If b <[[d]=[&]] then by the formula (x*)
b-a=b-c. Thus u,(b") = p.(b') for b’ < b, and so for [B]<[B]=b

| gadu= | g.dpu.
B’ B’

So g, = g. almost everywhere in B, i.e.

b=[B] <[g? =g7] = [v([a) = v([eD].
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(b) v is o-additive: In [9] it is proved that if [de(A4:B)] =1 then there
is a unique ce A such that [d = [¢]] = 1. To verify o-additivity it suffices to
show that

[(E fe) =T virem] =1
ned ned
whenever
[f: @ (A:B) and, for n# m, f(n)-f(m) =0] =1.
For new let c,e A be such that [f(#) =[E,]]=1. If we put c =} ¢,

new

then [[¢]1= Y f(n] =1 So it suffices to show that g7 =Y g0] =1 1If

new ned
beB then Y u. (b) = u.(b). Thus for [B] = b we have } ([ g. du) = [g.du.
new new B B

By the Lebesgue theorem

S ([ e, )= [ (3 g.)an

new new

Thus ) g, =g. ae; hence [g? =Y ¢2] =1. The rest of the proof is

new ned

similar.

We finish this section by the remark that if we apply Theorem 2 to the
measure given by Theorem 1, then we obtain the previous measure on
D in VB

3. Minimal products. Now we show that the operation of taking the
minimal product does not preserve measurability. '

For a partially ordered separative set P we denote by RO(P) the
complete Boolean algebra of regular open subsets of P.

Recall that A < P is regular open iff:

(1) A is open, ie. (qe A and p< q)—> pe A,

(2 (Vg <p)@r<q)(red)— peA.

We write pllg if @reP)(r<p and r<gq) and plq if “I(pllg). If
AeRO(P) then —A = {qe P: (Vpe A)(pLlq)). If 4,eRO(P) for iel then

>, Ai={qeP: (Vp< 9)@r < 9)@ieN)(re 4)}.
iel

Define for pe P, [p] = {qe P: ¢ < p}. Then the mapping p+—[p] is
a dense, order preserving embedding of P into RO(P).

Let us consider the following partially ordered set: 22 = {DeR: /(D) > 0,
D is a closed set and if G is an open set such that A(GnD)=0 then
G D = @} with the ordering: D, <D, iff D, = D,.

For D,, D, #? we have D\||D, iff A(D; nD,) > 0.

LemMa 3.1. 2 is dense in A. Hence # is separative and RO (P) = R.
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Proof. We must show that if be # and b > 0 then there exists De 2
with [D] < b. Let b =[B]. Let C be a closed subset of B with A(C) > 0. Put

D =C\U{I: I is a rational interval with (I C) =0}.

It is easy to see that De % and [D] <b. B

In view of the above lemma we can define the minimal product
AR as RO(P x#), where #xP is the cartesian product of 2
ordered coordinatewise. We will write A®B for a pair (4, BY e # x ?. Let
Q be a partially ordered separative set:

Q = {I =R: I is an open interval with rational endpoints}

with order: I, < I, iff I, =1,.

Define C = RO(Q) (i.e. C is the Cohen algebra).

We will show that #Q 2 is a product (in the sense of [6]) of two Cohen
algebras.

THEOREM 3.2. There exist two complete embeddings e,, e, such that:
(1) ey, e5: C>RO(Zx P,

(2) if a, be C\ {0} then e,(a)-e,(b) > 0,

(3) ey Cue; C completely generates RO(Z2 x P).

Proof. Let S be a partially ordered set. Call N =S maximal if for
every seS there is ae N such that s||a.

Lemma 33. If B is cb.a., S is separative, and h: S — B is a function such
that:

(1) h is 1-1 and order preserving,

(2) for sy, sy€S: s4lls; '[f h(sy)-h(sz) > 0,

(3) for every maximal N =S we have ) h(a) =1,

aeN

then there exists a unique embedding e: RO(S)— B such that for seS
e([s]) = h(s).
Proof. Define for Ge RO(S)
e(G) =) {h(s): seG}.

From the assumptions it follows that e has the required properties. W
With this in mind define for I, JeQ

hy(I)={A®Be ?x#. B—A <1},
hy(J) = {A®Be ?x ?: B+A cJ},
where
B—A=1{b—a: beB,acA}, B+A=1{b+a: beB, acA},

I is a closure of I.
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(@) If 1, JeQ then h,(I), h,(J)e RO(Z£ x ).

We show this for h, (I). Of course h,(I) is open. For regularity assume
that ABe#x# is such that for every C®D < A®B there is
E®QF < C®D with F—E <. Let beB, acA. Then b—acB—A. Put I"
= [a—1/n, a+1/n] and similarly for I}. As AQB||I;®I;, for ne w, there are
sets E,®F, with F,—E, c(I?—I")n1. Hence for new, (I[;—ID NI # @, but
N U3—1I2) = \b—a} so b—ael. This shows that B—A4 < I, ie. AQBeh, (I).

Thus h, (I) is regular open as required.
(b) If N =Q is maximal then ) h(l) = 1.

IeN

Let AQBe # x #. By the theorem of Steinhaus ([10]) there is an open
interval J such that J < B— A. As N is maximal there exists Ie N such that
InJ # @. But then we claim that h,(I):-[A®B] > 0.

Pick arbitrary xoelnJ, x, has the form b—a for some beB and
acA. Let new be such that I}—I; cInJ. As AQB||I;®I}, there exists
C®D with C<XAnI), DS BnIj. Thus C®D < A®B and D-C = I}—-1;
clInJclIcl, ie. C®Deh,(I). This means that [C®D] < h,(I)-[A®B].

It is now easy to see that h,, h, satisfy the assumptions of Lemma 3.3
and thus determine complete embeddings e,, e,. As h, (I)-h,(J)> 0 and Q
is dense in C we have for a, beC\ {0}

e,(a)-e;(b) > 0.

(c) hi{ QU h;Q completely generates RO (2 x ).
Observe by drawing a picture that for ge Q:

[[q’ CD)X(“CI), (1))]: Z hl((_w$ a))hZ((b3 +w))a
(*) b—'a=2q

[(—oc, 0)x[g, 0)]= Y hy(@, +o0)) hy((b, +)).

a,beQ
b+a=2q

But the left-hand sides of (x) constitute a set of generators for

RO (2 x ).
The proof of Theorem 3.2 is finished. W

Remark. The explicit formula for embeddings e,, e, is also
€, (G)={A®B: B-A <G}, €,(G)={A®B: B+A<G..

COROLLARY 34. If ry, r, are the canonical random reals in V*®* and c,,
c, are the canonical Cohen reals obtained by e,, e,, then

AR — ,
|4 E “cy=ry—ry and ¢c; =r,+r,"..
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Proof. The equalities () in the proof of Theorem: 3.2 stated in
Boolean-valued terms say that for every qeQ:
VAR = “G<r, iff 2§ <c;—c,”
and
VAR = “G<r, iff 2§ <cy+¢,”,
1e.
VRO = “c =r,—r) and c; =r,+r,".

COROLLARY 3.5. C is isomorphic to a complete subalgebra of RRR.
This corollary was quoted (without proof) in [12].
COROLLARY 3.6. #@A is not a measure algebra.

Proof. The proof is immediate from Corollary 3.5 and the fact that C is

not a measure algebra ([6]).
Now we generalize Corollary 3.5 (and hence Corollary 3.6) to arbitrary

atomless measure algebras.
Let us recall a useful lemma from [2].
NEAT COVER LEMMA. If (P, <,) and (P,, <,) are two partially ordered

sets and ¢@: P, — P, is a function such that:
(1) @ is “onto”,

(2) if p<,q then ¢(p)<,0(9),

(3) if p<,0(q) then there is r <, ¢ such that ¢(r) = p,
then RO(P,) is a complete subalgebra of RO(P,) (the function ¢ is called a
neat cover).

THeorem 3.7. If By, B, are atomless measure algebras then there exists
a complete embedding h: C — B, ®B,. In particular, B, ®B, is not a measure
algebra.

Proof. We can find two embeddings e,, e, such that ¢;: # — B, for

i=1, 2

Now we define a neat cover function

¥: (By\(0}) x(B2\ {0}) — (#\(0}) x(#£\ [0])
by
Y (<by, by)) = (my(by), m2(b2))

where m;(b) =[] {ce &: e (c) > b}.

By the neat cover lemma, #Q % is a complete subalgebra of B,®B,.
Now apply Corollary 3.5. B

4. Other operations. In Section 2 we have observed that two step
iteration preserves measurability. So starting from the algebra #, one can
construct an increasing sequence of measure algebras:

R<AR*R<(R*R)*xR<(R+R)sxR)+ R) < ...
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Observe that the direct or inverse limit of this sequence is not a measure
algebra. The first contains C as a complete subalgebra, the second is not even a
c.c.c. algebra.

In Section 3 we dealt with Boolean factors. The usual factors, i.e. by
ideals, do not in general preserve measurability.

THeEOREM 4.1. There is an ideal I on # such that R/l = C.

Proof. First observe that there exists a monomorphism f: C — #. Of
course such an f is not complete. The existence of such an f can be deduced
from the Sikorski Injectivity Theorem ([6]). So we can think that C is a
subalgebra of #. Consequently C is a retract of #, ie. there is a
homomorphism h: # — C such that h is the identity on C. Now put I
= {aeR: h(a) =0}. By the fundamental Boolean algebras theorem /I
=C. B

In Section 3 we developed the minimal product of #. The infinite
minimal product of # is also not a measure algebra, however it is a c.c.c.
algebra. We define the strong product [| # to be RO(P), where P

={f fiw— #\{0}} with coordinatewise ordering. Similarly we define
[] C. We shall show that these two products are isomorphic to a well-

known algebra Coll(w, 2°) which collapses 2“ to w ([4]).

Now we recall the well-known characterization of the algebra
Coll(w, 29):

THeOREM. If P is a partially ordered separative set of cardinality 2°
such that V*°P = |(2%) = w then RO(P) = Coll(w, 2%).

CoroLLary 4.2. [] C = Coll(w, 2¢).

Remark. The above corollary is quoted in [5]; it was also
independently proved by Z. Szczepaniak.
The following proof was found in a manuscript of A. Miller.

Proof. Consider C as RO(Q) where Q =(J "w, 2). Let Q“ be the

strong product of Q. Let {c,: new) be the sequence of canonical Cohen
reals added by a generic filter G on Q.
Define z,e2“ by:

_JU i cm(cmo1 (... co(n)...)) is even,
z"('")‘%o i Cmlcmer (.. co(n)...)) is odd.

It s easy to see that
VIG] F 2°nV={z, new). B

From Theorem 3.2 we can deduce
TueoreM 4.3. [ # = Coll(w, 29).
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Proof. Of course |[] #| = 2°. Let
new

={f: f: o> 2\{0}}.

Observe that P = Q where

Q={f:f: @ (@\{0})x(2\{0})}.

Hence [[ # = n RRA.

Let

new

By Corollary 3.5 there exists a complete embedding h: C— #QR.

S—fffw—>C\‘0}} and define H: Q- S by H(f)(n)—n(f(n))

where m is a canonical projection induced by h, ie.

n(b) =[] {ceC: b< h(c)}.

It is easy to verify that H is a neat cover function, so [ C is a complete

new

subalgebra of H A and, by completeness, V¥ £ |29) | =w. B

(1]
(2]
(3]
(4]
(5]
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