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Let X be an algebra. A linear space topology ¢ on X is called mult:-
plicative if the map (¢, y) — oy of X xX into X is (jointly) continuous.
X equipped with such a topology is called a topological algebra. Clearly, o
is multiplicative iff for every neighbourhood U of zero there exists a neigh-
bourhood V of zero such that VV < U. If the absolutely convex neigh-
bourhoods U of zero such that UU < U form a base of neighbourhoods
of zero, then X is called locally multiplicatively-convex (locally m-convex) [8].
We say that a subset S of a topological algebra is m-bounded if for
each neighbourhood U of zero there exists a neighbourhood V of zero
such that SVUVS < U or, equivalently, if the maps « —> 2y, and ¥y — .9,
where z,, ¥, € 8, are equicontinuous at zero. If S is a bounded subset of X,
then 8 is m-bounded (cf. the proof of Corollary 1). The converse holds
when X has a unit.

In his fundamental work [8] on locally m-convex algebras Michael
gave some sufficient conditions for the local m-convexity of the algebra X
equipped with the linear inductive limit topology associated with an
increasing sequence (X, , o,) of locally m-eonvex subalgebras of X. This
study was continued by Warner [13] who gave some other conditions to
this effect with many applications.

The present paper deals with a similar problem in the context of the
so-called generalized inductive limits of topological algebras.

The notion of generalized inductive limit of locally convex spaces
was introduced first by Garling [5] who was inspired by some ideas con-
tained in the earlier work of Wiweger [14]; a careful study of an important
particular case was carried out by Roelcke [9]. Extensions of this notion
to arbitrary topological linear spaces are due to Turpin (1971) and Adasch
and Ernst (1974) (see [10], [11], and [1] for an account of their investi-
gations). In the sequel we shall essentially follow Turpin [11].

Let X be a linear space over the field K of real or complex scalars
and let D = {a € K: |a| <1}. By a balanced topological space we mean
a balanced subset S (of X) equipped with a topology ¢ such that the map
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(a, z)> ax of DX S into § is continuous. By an inductive system (of
balanced topological spaces) on X we shall understand a sequence

Ir'=(8,,0,:neN)

of balanced topological subspaces of X such that
(Il) -X = U Sn;

n=1

(L) 8,+8, = 8,;, and the map (z,y)— x4y of 8, X8, into §,,,
is continuous at zero for al ne N = {1,2,...}.

It follows from (I,) that 8, < §,,, and the inclusion map is contin-
uous, i.e., the topology induced by o,,, on S, is weaker than o, (in sym-
bols: o,,,18, < g,).

‘Let I' = (8,,0,:n € N) be an inductive system on X. We denote
by o, the finest linear topology on X such that ¢,|8, < o, for all »n e N.
Let. #, = #(o,) be a base of balanced neighbourhoods of zero in (8,, g,).
Then the family of all sets

U=S" v,:= Y0,

n=1 n=1z_]

where U, € %, (» =1,2,...), i8 a neighbourhood base of zero for o,.

Special cases. We shall call I

(i) locally comvex if, for each n € N, 8, is absolutely convex and o,
has a base of zero consisting of absolutely convex sets (in this case o is
obviously locally convex);

(ii) striet if ¢,,,|8, = o, for all n € N (in this case ¢|8, = g,; [11],
p. 41);

(iii) bounded if each 8, is a bounded subset of 8, ., (i.e., 8, is absorbed
by every neighbourhood of zero in &8, ,);

(iv) stmple if X is equipped with a linear topology o and e, = ¢|S,
for all n € N;

(v) bornivorous if I' is simple and every o-bounded subset of X is
contained in some 8, ;

(vi) usual if each 8, is a linear subspace of X and (8,, ¢,) is a topolo-
gical linear space.

If I, and I', are two inductive systems on X, then we call them
equivalent and write Iy ~ I', if o , = Or,- It is easily seen that if I’
= (8, 0,: ke N) and (k,:neN), (m,:n e N) are strictly increasing se-
quences in N such that k, <m, (n» €N), then I = (8, , 0, |8 :ne N)
is an inductive system on X and I' ~ I".

Now we suppose X is a (linear) algebra and let I" = (8, 0,: #» € N)
be an inductive system on X. It is easily seen that if, for every » € N,
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8,8, = 8,,, and the map (z,y)— xy of 8, xS, into §,,, is separately
continuous, then the multiplication on X is also separately continuous
under o-. As we would like (X, o) to be a topological algebra, it is natural
to impose somewhat stronger conditions on I We shall therefore say
that the system I' is algebraic if

(I) 8,8, < 8,;, and the map (z,y)+— 2y from 8, x 8, into §,,,
i8 continuous at zero for all n € N.

The system I' is said to be m-bounded if

(m) for every n € N and every U € %, ,, there exists V € #, such that
V8, us,V < U.

Note that if 8,8, < 8,,, for all » € N, then (m) implies (Is).

Our main result is Theorem 1 which shows that (m) suffices for the
multiplicativity of o¢,; for a simple and bounded inductive system I’
it is also necessary (Corollary 1). In corollaries to Theorem 1 we indicate
also a number of cases where the initial algebraic system I" does not satisfy
(m) but for which an equivalent m-bounded system I can be found.

THEOREM 1. If I' = (8,, 6,: n € N) is an m-bounded inductive system
on the algebra X, then (X, o) i8 a topological algebra.

Proof. Let p: NXN — N be an injective map such that p(1,1)
= 2 and p(¢,j)=>1+j for all ¢,j e N. Let

v=>u,
n=1

where U, € @, for all » ¢ N. We shall find sets V, € #, such that
(1) ViV < Upumy for all m,m e N.

Hence it will follow that the o,-neighbourhood of zero

V=13V,
n=1
satisfies VV < U.

Forn = m = 1choose V, € %, such that 8, V,uV.8, € Uy = Uy,
then (1) is satisfied for n = m = 1. Suppose we have already found sets
Vie®, 1=1,2,...,n, for some n>1, so that (1) is satisfied for
I1<m<n If 1<k<n+1, then p(n+1, k) > n+2, and hence by (m)
we may find W® e #,,, such that

k
W( )Sn+l [ Up(n+l,k) a:nd Sn_HW(k) c Up(k,n+l)‘

Let V,,, € #,,, be such that

Va1 € WOAWEO A [, AWE+),
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Now, if 1 < m < n+1, then
Vo Va1 © Sn+1W(m) < Up(m,n+l)7 Va1 Vi <= W(m)Sn+l < Up(n+1.m)--

This completes the proof.

COROLLARY 1. If I' is a bounded algebraic inductive system on the algebra
X, then (X, o) i8 a topological algebra.

Proof. If Ue #,,,, then by (I;) there exists V € #,,, such that
VV < U. Since 8, is bounded in §,.,, there exists a € (0, 1) such that
a8, < V. Choose W € &, so that W < aV. Then

8, W < 8,(aV) =(a8,)V <« VV <« U
and, similarly, W8, < U. It follows that the inductive system
I'y = (83415 02n_1:m €N)

is m-bounded. Evidently, I' ~ I}, and so we may apply Theorem 1,
which completes the proof.

COROLLARY 2. Let I' be a bounded simple inductive system on the alge-
bra X. Then o, s multiplicative iff I' i3 m-bounded.

COROLLARY 3. Let (X, o) be a topological algebra with a fundamental
sequence of bounded sets and let v* be amother multiplicative topology on X
such that v* < o. Then the finest linear topology y on X agreeing with t*
on all o-bounded sets is multiplicative.

Proof. From the assumption on (X, o) it follows that it has a funda-
mental sequence (S,: n € N) of bounded balanced sets such that (8, + 8,,)U
U(8,8,) c 8,,, forall n e N. Then y = 7., where I" = (8, v*|8,: » € N),
and so it is enough to apply Corollary 1.

Example. Let C(S) be the topological algebra of all bounded and
continuous (real- or complex-valued) functions on a locally compact
Hausdorff space 8 equipped with the sup-norm topology ¢. From Corolla-
ry 3 it follows immediately that the strict topology g on C(8) (cf. [3]), i.e.,
the finest locally convex topology on ((8) agreeing with the compact-open
topology on all o-bounded sets, is multiplicative. For another proof see
[3], p. 152.

Let (Y, ) be a topological linear space. Then #£(#) will denote
a (fixed) base of balanced ¥#-neighbourhoods of zero and Bd(#) the class
of all 9-bounded subsets of Y.

THEOREM 2. Let I' = (8,,0,:n € N) be a usual inductive system of
topological algebras on X such that

(2) #(0,)nBd(0,,,) #9  for each n e N.
Then (X, o) is a topological algebra.
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Proof. Let U, € #(0,)nBd(o,,,) for each n e N. First we shall
construct an inductive system I, = (4,, 0,|4,,: » € N) such that I' ~ Iy,
where A, € #(0,)nBd(0,,,) and also (4,4 A4,)V(4,4,) < 4,,, for all
n € N.

Set A, = U,. Suppose we have already defined A4,, 4,,..., 4, in
such a way that the desired conditions are satisfied. Since (4,+4,)U
v(4,4,) is o,,,-bounded, it is contained in aU, , for some a > 0. Set
A,., =aU,,,. It is obvious that I, is an algebraic and bounded inductive
system on X. We have also I' ~ I';, as is seen from the following simple
fact (cf. [6]): If a, B are two linear topologies on a linear space and U is
a p-neighbourhood of zero, then a < g iff | U < | U. Finally, by Corol-
lary 1, the topology o, is multiplicative.

Remark. Condition (2) is clearly satisfied when each (8,,, o0,) is locally
bounded or when the inclusion map of 8, into §,,, is compact (or pre-
compact) for each n € N.

COROLLARY 1. The (linear topological) direct sum of a sequence of locally
bounded topological algebras is a topological algebra.

Remark. The (linear topological) direct sum of a sequence of locally
m-convex algebras is a locally m-convex algebra (cf. Example 9 of [13]).

A topological linear space (X, o) is called an Ultra-L-space (respective-
ly, Ultra-Lb-space) if 0 = o for every simple (respectively, bornivorous)
inductive system I" on X. Every ultrabarrelled space is an Ultra-L-space
and every quasi-ultrabarrelled space is an Ultra-Lb-space. It is easily
seen that every simple inductive system on an Ultra-L-space is borni-
vorous. For the basic properties of spaces of this type we refer to [1],
[6], and [7].

THEOREM 3. Let I' be a usual inductive system on the algebra X consist-
ing of topological algebras (8,, a,) each of which is an Ultra-Lb-space with
a fundamental sequence of bounded sets. Then (X, o) i8 a topological algebra.

Proof. Let (BM™:m e N) be an increasing fundamental sequence of
o,-bounded balanced sets in 8,. Let 4, = B{"). Suppose for some n € N
we have already chosen sets B, eBd(o;) so that (4;+A4,)U(4;4);)
cd,, fori=1,2,...,n Since A, is o,,,-bounded, there exists p e N
such that (4,+4,)U(4,4,) c B&*). Then define

Ay, =B, +BY, + ... + B+ BOY.

Let I, =(A,,0,|4,:neN). It is obvious that ¢, < or, - Now fix
k € N. Then

BY <4, and o |BP <o |BY

for all » > k. Since (8, o) is an Ultra-Lb-space, o, |8, < ¢, for all k€ N.
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Hence oy < or. Thus or = or and it suffices to apply Corollary 1 to
Theorem 1.

Now let X be an algebra with a locally convex topology o. Such an
algebra (X, o) is called inverse continuous if it has a unit ¢, the multipli-
cative group G(X) of invertible elements is open, and the map z+> z~!
is continuous on G(X). It is known (and easy to see) that if the map
x> o~ ! is continuous at e, then it is continuous on G(X). By a theorem
due to Turpin (cf. [12], p. 123), every commutative inverse continuous
locally convex topological algebra is locally m-convex.

We shall need the following lemma proved in [2].

LEMMA. Let X be an algebra with the unit e and let I' = (8,,, 0,: » € N)
be a locally convexr m-bounded inductive system on X such that for each n € N

(a') SnS'n < Sn+l’

(b) 8, 78 contained in a subalgebra X, of X,

(¢) X, e« X, ..., X =) X,
n=1

(d) o, = 7,18, where 7, is a locally convex topology on X, .
Assume that
(#) for every n € N there exist V € #(z,) and m € N such that

e+Vn8, cG(X) and (e+Vn8,)'c8,.

Then (X, o) 18 inverse conlinuous.

THEOREM 4. Let X be an algebra with the umit e and assume that
I' =(8,, o,:» € N) is the usual inductive system of inverse continuous
topological algebras (S, , o,) on X. Suppose also that

#(0,)nBd(0,,,) #O for all neN.

Then (X, o) is an inverse continuous topological algebra.

Proof. Without loss of generality we may assume that e € S, for all
n € N. Hence, by assumption, for each n ¢ N and each U € #(o,) there
exists V € #(o,) such that

e+V <GS, =G(X) and (e+V)' ce+U.

As in the proof of Theorem 2 we can construct an algebraic bounded
inductive system Iy = (4,, 0,|A,:n € N) such that I' ~ I';, where

A, € #(o,)nBd(o,,,) for all neN.

On the other hand, I'; = (4,,_;, 05,_,|4,,_,: 7 € N) is an m-bounded
inductive system and I, ~ I'; (see the proof of Corollary 1). Hence it is
enough to prove that I, satisfies condition (*) from the Lemma. Fix
n € N. Since 4, € 2(g,) and (8,, g,) is inverse continuous, there exists
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Ve #(o,) such that
e+V c@(X) and (e+V)'ce+A4,.
Hence
e+Vnd, cGX) and (e+Vnd,)™! <A,

for some m € N.
Applying the above-mentioned result of Turpin we now prove the
following

COROLLARY 1. If I' 18 the usual inductive system of commutative Banach
algebras on the algebra X with a unit, then (X, o,) 18 a locally m-convex
algebra.

Remark. In general, the usual inductive limit of locally m-convex
algebras need not be locally m-convex (cf. Example 6 of [13]).

I would like to thank Professor L. Drewnowski for his help in prep-
aration of this paper.
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