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ON PROJECTIVE SPACES AND RESOLUTIONS
IN CATEGORIES OF COMPLETELY REGULAR SPACES

BY

J MIODUSZEWSKI axo L. RUDOLF (WROCLAW)

We shall give here a reduction of the theory of projective spaces
and resolutions in categories consisting of completely regular spaces
and continuous mappings to that of their full subcategories consisting
of all their compact spaces. The last one, chronologically earlier than
the first, due to Gleason [4] and Rainwater [9], is quite formal. The
first one was considered by lliadis [7], Ponomarev [8] and Flachsmeyer
[1]. The reduction consists only in categorial considerations. Let us
remark, however, that some of the results of the last three papers are
valid for Hausdorff or regular spaces, too.

1. Preliminaries from the theory of categories. Let € be a category
and .« a clags of morphisms of . An object P is said to be o7-projective
if for each morphism Y — X from ./ and each morphism P — X there
exists a morphism filling up the diagram (')

P~
¥ \\&
X<~—Y

A morphism Z — Y is said to be an o/-injection (2) if for each of
its decompositions Z — Z' — Y the morphism Z — Z’ is an isomorphism
whenever it belongs to 7. Clearly, if an «/-injection belongs to =7, it
is an isomorphism.

A morphism Y — X from «/ is said to be «Z/-irreducible if each
&-injection Z — Y is an isomorphism whenever Z — Y — X belongs
to .

A morphism P — X from .o/ is said to be an .«Z-projective resolution
of X if it is «7-irreducible and P is «Z-projective.

(1) to be commutative, of course.
(?) For this notion and related questions see J. Michalski (a paper in prepa-
ration).
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Consider two assumptions on &, namely that

(1) a selection (®) is an isomorphism whenever it belongs to </,

(2) @ retraction ts an tsomorphism whenever it is an <Z-injection.

We deduce from (1) that

(3) A selection is always an -injection.

In fact, if Z — Y is a selection and Z — Z' — Y is its decomposition,
where Z — Z' belongs to «/, then Z —Z', being a selection, is, by (1),
an isomorphism.

Although assumptions (1) and (2) seem to be casual, yet they imply
a number of useful properties of ./-projective resolution, e. g. a kind
of uniqueness.

Call a morphism f a (strong) semi-monomorphism if the cancellation
law

fog = f = g is (the identity) an isomorphism
holds.

1.1. If p: P> X is a semi-monomorphism belonging to of and P is
o -projective, then p is an of-projective resolution of X.
It suffices to prove that p is «Z-irreducible. To do this let Z — P

be an .o7-injection such that Z — P %X belongs to 7. Since P is &/-pro-
jective, we may fill up the diagram

P
N
p I \\\
J S
X<—-P<Z
p

Since p is a semi-monomorphism, P —-Z — P is an isomorphism.
Hence Z — P is a retraction. By (2), Z — P is an isomorphism.

1.2. If p: P — X is a semi-monomorphism from </ and P is «/-pro-
Jective, then p: P — X is isomorphic with any of-projective resolution q¢:
¢ - X of X.

To prove this, take morphisms P —Q and ¢ — P such that P > X
=P Q%L X and QLX=Q->P iX, the existence of which fol-
lows from the fact that P and @ are «/-projective and that » and ¢ belong
to /. We easily get P> X =P @ -~ P L X. Since p is a semi-mono-
morphism, P —@ — P is an isomorphism. Thus P - is a selection.
By (3), P — @ is an «Z-injection. Since P — @ =X belongs to o/ and ¢
is «/-irreducible, P — ) is an isomorphism.

(®) Selection, a dual notion to the retraction, is a morphism having a left in-
verse.
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In the case when all the .o7-projective resolutions of X are mutually
isomorphic, we denote each of them by o*: ¢* - X (we omit, here the
symbol of the class 7).

Clearly, for each Y — X, where Y is o-projective, there exists
a morphism filling up the diagram

Y\

RN
(4) N

X A

a

aX

If the category # and the class o are such that ¥ — oX is uniquely
determined by Y —X and if the composition «¥ — ¥ — X belongs
to o/, the operation a (defined up to now only on objects) is of a func-
torial character. Namely, to a morphism Y —> X there corresponds a
morphism a¥ — aX uniquely determined by «Y-—>Y — X in the diagram
of the form (4), so that a is defined on morphisms. Now, it is easy
to check that a is a functor.

Another notion of the theory of categories we shall use is that of
uniformization of a pair of morphisms (4) f, ¢: ¥, Z = X of the category:
it consists of a pair of morphisms &, %: T = ¥, Z such that the diagram

h
T -——Y
ky vf
Z ——>X
g

is commutative and such that for each pair »’,k': 7" = Y, Z having
the same property there exists a wnique morphism w: 7° — T such that
how = k" and kowu = k’'. These conditions determine » and % uniquely
up to an isomorphism. Cf. e. g. pullback diagram in [2], p. 40; a unifor-
mization of two morphisms may be regarded as a special case of a more
general notion of the greatest lower bound or inverse limit of a system
of objects and morphisms of the category.

Call k an inverse image of g under f, in symbols, b — f'(g).

Let us note the following cancellation law for uniformizations,
which is quite easy to prove:

1.3. If w,v: W =T are such that how = kowv, then u — v.

u
(*) The symbol 4, B=xC, D denotes two morphisms %: 4 —> C and v: B — D.
v

We shall write also u,v: A, B=0,D.If A = B, the symbol will be written shortly
w,v: 4 3 C,D. An analogous abbreviation will be used in the case of ¢ — D. So,
the meaning of the symbols 4, B 20, D = E, F, which will appear later, is clear.
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2. Some facts and informations concerning the compact case. Let
%% be a category (°) consisting of compact completely regular spaces,
i.e. compact Hausdorff spaces, and continuous mappings.

By a projective (compact c.r.) space we mean an sZ-projective object
of ¥¢#, where o is the class of all mappings (%) onfo TEX.

The following characterization of projective spaces is rather formal.
In the proof we shall omit the trivial implication.

2.1. Projective (compact c.r.) spaces are the same as spaces each map-
ping onto which is a retraction.

Let @ be a space each mapping onto which is a retraction. To prove
that @ is projective, let f: Y25 X and g: @ — X be given. Take a unifor-
mization

/Ay
v v

of f and ¢. Since f: ¥ — X is onto, Z — @ is onto, too (an easy property
of the inverse image, true in each “sufficiently complete” category of
sets). Hence, by assumption, Z — @ is a retraction. Taking an arbitrary
right inverse of it, @ — Z, we get a mapping @ -~ Y = ¢ —Z — Y such
that ¢ — Y —f> X =y % X. This proves that ¢ is projective.

Remark. The space Z is in fact the subset {(v,q): f(y) = g(q)}
of the product Y <@, and it is compact whenever Y and ¢ are compach
and f and g are continuous. The category ¥ # considered in theorem 2.1
ought have the property: if f and g belong to ¥%#, then the uniformi-
zation of f and ¢ belongs to €€ %, too. In the case of compact c.r. spaces
this assumption is of a purely formal character. In the proofs which
follow, we shall assume that categories are such that the operations
pointed in the proofs may be performed. Of course, we shall assume
this only in cases when such assumptions are of purely formal character,
e.g. a8 in the just described situation.

The following characterization will be used in the sequel only excep-
tionally:

2.2 (Gleason [4]). Projective (compact c. r.) spaces are the same as
extremally disconnected spaces.

Recall that a space is extremally disconnected if the closure of each
open subset is open.

(5) We shall not consider the category of all compact c.r. spaces (c.r. for com-
pletely regular) and their all continuous mappings. Although such a category is
not antinomial, yet there is no need to use it in practice.

() continuous, of course.
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The class ¢ of all mappings onto belonging to ¥¢#% satisfies con-
ditions (1) and (2) of § 1. It is obvious that condition (1) holds. To prove
(2) it suffices to know that

(5) a?-injections are one-to-one.

To prove this, let h: Z — Y be an «/-injection. Suppose, on the
contrary, that for some distinet points a and b we have h(a) = h(b).
Let R be an equivalence relation on Z the equivalence classes of which
are {a, b} and single points. Take the decomposition Z — Z/R — Y of &
(which exists in a “sufficiently complete” ¥€Z%). Since h is an o/-injection,
Z — Z|R is an isomorphism. We have a contradiction.

From (5) it follows, in virtue of compactness, that o7-injections
are embeddings, even closed embeddings. This explains the meaning
of o7-irreducible morphisms of #¢# which will be called irreducible map-
pings. By a projective resolution of a space X of €4% we mean an irre-

ducible mapping Po—nto—> X, where P is a projective space.

The existence and uniqueness up to an isomorphism of projective
resolutions for each (compact c.r.) space was shown in [4] and [9].

More precisely,

2.3 (Rainwater [9]). Hach compact c.r. space admits a projective
resolution which is a strong semi-monomorphism.

We know that this implies the uniqueness up to an isomorphism
of projective resolutions, according to 1.2 and the fact that 7 satisfies
conditions (1) and (2) of § 1.

3. Projective completely regular spaces. Let ¥% be a category con-
sisting of completely regular spaces and continuous mappings. Assume that
%R, as well as its full (7) subcategory including all compact spaces, call
this subcategory ¥¢%, satisfy some ,,completeness” conditions as in § 2.

Let o be the class of all perfect mappings of €%, i. e. mappings f:

onto

Y25 X such that the induced mappings ff: Y — X in the Cech-Stone
compactification transform BY — gy (Y) into (in fact, onto) X — fx(X)
(if Z is a space, we denote by f: Z — fZ its Cech-Stone embedding).
Perfect mappings were characterized by Henriksen and Isbell [5] to be
closed mapping each inverse image f~'(x), xeX, of which is compact.

By a projective (completely regular) space we mean an o/-projective
object of €%, where «/ is the class just defined.

Note that if o is the class of all mappings onto of €% (not neces-
sarily perfect), then o/-projective objects are simply discrete spaces.
By restricting the considerations to the class of perfect mappings we
exclude this trivial solution.

(') A subcategory is said to be full if it contains morphisms of the category
whenever it contains initial and final objects of them.
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Before we pass to the characterization of projective ec.r. spaces,
we shall show a property of inverse images.

6) If g: ¥ — X ds an embedding and f: Z — X is a mapping, then
f"l(g) 18 an embedding.

To prove this, consider the diagram where h = fg). In fact,
since ¢ is one-to-one, f~(g) is one-to-one, too. Consider the decomposition
T—-Y —Y of f-1(9), where ¥’ - Y is an embedding and, in conse-
quence, 7 — Y’ is one-to-one and onto. There exists a mapping (in the

Y'
/" N\
T—/——*Y

I h
kl /// lf

zt———rX

g

set-theoretical sense) w: Y’ —Z such that 7 — V' % Z — T hd Z. The
mapping u: Y’ — Z is continuous, for if V is an open subset of Z and V'
an open subset of X such that g=* (V') = V, then u—1(V) = ¥’ A g (V'),
g~ (V’) being an open subset of Y’.

Mappings Y’ = Y, Z induce a mapping Y’ — T commuting with
them in the unlformlzamon diagram. We eagily get T 5 Y=7T-Y-—

—>T—> Y and T—> Z =T-Y 1T Z. By uniqueness assumed in the
definition of uniformization, 7' — ¥’ — T is an identity. Hence T — Y’
is a selection. Being onto, 7 — Y’ is an isomorphism. Thus 7 — Y is
“an embedding.

3.1. Projective c. r. spaces are the same as spaces each perfect map-
ping onto which is a retraction.

We prove only the non-trivial implication.

Let @ be a space each perfect mapping onto which is a retraction.
To prove that ¢ is projective, let a perfect mapping f: ¥ — X and a map-
ping g: @ — X be given. Take a uniformization of f and ¢ and a unifor-
mization of ff and fg, being the “top” and the “bottom?” face of the
“cubic” diagram given on p. 191 (further arrows will be explained
later).

Mapping Z — 7 is induced by Z - Q —Q and Z —» Y - Y.

We show first that

(7) The “left vertical” face Z = Z, Q =2 BQ of the “cubic” diagram
8 a uniformization of the pair Z, Q = Q.

Todothls,letW:;Z () be such that W—>Z—>ﬁQ W —@Q — pQ.
Consider W — Z — Y. The image of W under this mapping is contained
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in fy(Y) for in the other case the mapping Y ki AX (which transforms
pY —py(Y) into X —fx(X), f being perfect) would transform some
points of the image of W into fX — 4 (X), but on the other hand, W is
transformed by W — @ — pQ — X into fx(X

Hence, a mapping W — ¥ may be defined such that W —- ¥ — X
=W —>€Q - X (we get this commutativity after a cancellation by the
monomorphism X — gX),

Now, mappings W = ¥, induce a mapping W Z such that
WSZ>Q=W->Qand W5 Z >Y =W Y. To get (7) we must

have equations W->Z >Q — W >Q and WS Z 7 =W-=2Z. It
remains to show the second one.

~

This is a eonsequence of the equations W —Z -+ peY =W Sz5

Z—> pQ) and W Y/ BY¥ = wiz52 — Y which follow from
the commutativity properties of the diagram known up to now. These
equations allow, in virtue of 1.3, a cancellation by % and k, simulta-
neously, since & and % fill up the uniformization on the “bottom” face
of the diagram.

Now, since the “left vertical” face of the diagram is a uniformization

and ¢ — @ is an embedding, Z % 7 is an embedding, by (6).
The next step consists in the proof of the equation

(8) $(2) = k(Bo(Q),
the inclusion < of which is obvious.

Suppose, on the contrary, that there exists a pomt aek- 1(,3Q(Q))
—8(Z%). Let 8 be a one-point space and let i,j: 8=27,Q be given by
©(S) and j(8) = k(a). We have § —>Z - fQ = S —@ — Q. But there
is no mappmg 8 — Z such that 8§ > 7 — S 75 Z, because the image

of 8 75 7 is $(Z) and the image of § 5 7 s a¢s(Z). We have a con-
tradiction with the properties of uniformizations.
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Let fZ — 7 be the induced mapping of Z % 7 in the Cech-Stone
compactification. The composite mapping (Z —~ 7 — BQ is equal to
pZ — p@, the induced mapping of Z — @, in virtue of the uniqueness
property of the Cech-Stone compactification.

Since s: Z — 7 is an embedding, h(Z) is a compactification of Z,
and hence the mapping Z — Z transforms pZ— (%) into h(Z)—h(Z).
By (8), h(Z)—h(Z) is transformed into AQ— (@)

This proves that Z — @ is perfect.

Then, by the assumption on @, Z —@ is a retraction. The rest of
the proof of 3.1 is a formal consideration, the same as that of 2.1.

Let us exemplify our method by proving another characterization
of projective c.r. spaces, namely that they are the same as extremally
disconnected spaces (see [1]), reducing the proof to the compact case.

The following lemma may be found in book [3]:

(9) If E is an ed. (e.d. for extremally disconnected) space, then BE
is an e.d. space.

3.2. Hach perfect mapping onto an e. d. space is @ retraction.

In fact, let F be an e. d. space and let f: ¥ — E be a perfect map-
ping. Pass to pf: fY — pE. By (9), fE is e. d. and hence projective in
the subcategory %%, by 2.2. Then by the trivial implication of 2.1,
pf is a retraction. Let fE — Y be one of the right inverses of gf. Since f
is perfect, pf transforms Y —pBy(Y) into pE— fg(E). This allows to
define a mapping E — Y by cutting pE —fY to fgr(H). Mapping B —Y
is a right inverse for f: ¥ — K.

3.3 (Flachsmayer [1]). Projective c.r. spaces are the same as extremally
disconnected spaces.

Tt is an immediate consequence of 3.1 and 3.2 that e.d. spaces are
projective. The proof of the converse implication is an easy consideration,
the same as that of the analogous implication in the compact case
(see [4]).

4. Projective resolutions of completely regular spaces. By a pro-
jective resolution of a c.r. space X we mean an o/-projective resolution
of X which is an object of €%, where & is the class of all perfect map-
pings of €.

In order to assure some good properties of projective resolutions
(see § 1), we shall check conditions (1) and (2) for <.

Condition (1) obviously holds. To prove (2) note that
(10) oZ-injections are one-to-one.
To prove this, let h: Z — ¥ be an &-injection. Suppose, on the

contrary, that for some distinet points a and b we have h(a) = h(b).
Let R be an equivalence relation on Z the equivalence clagses of which
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are {a, b} and single points. Take the decomposition Z -~ Z/R — Y of h.
By the relation R just defined, the quotient space Z/R is c.r., so that
the decomposition may be performed in a “sufficiently complete” #Z.
Clearly, the quotient mapping is perfect (in virtue of Henriksen-Isbell
characterization of perfect mappings, it suffices to check that Z — Z/R
is closed). Now, since & is an &Z-injection, Z — Z/R is an isomorphism.
We have a contradiction.

Having (10), condition (2) is obvious.

Before the construction of projective resolutions for c.r. spaces,
let us note a fact concerning embeddings.

(11) A dense embedding into a compact c.r. projective space is the
Cech-Stone embedding.

For let i: X — P be an embedding of X as a dense subset i(X) in
a projective compact c.r. space P. The induced mapping X — P trans-
forms BX—pfx(X) into P—i(X). Since P is projective, there exists
a mapping filling up the diagram

P<+—— 8X

where P —P is the identity. By the property of X — P just mentioned,
P — pX transforms ¢(X) into X. Thus, the compactification X — P
majorizes the Cech-Stone compactification X Fx pX, hence it is isomorphic

1.4. Each completely reqular space admits a projective resolution which
18 a strong semi-monomorphism.

Let X be a c.r. space. To construct a projective resolution of X,
we take first fx: X — X and «/*: afpX — pX, the projective resolution
of X in €#€Z. Now take a uniformization

4 ———- > afp X
e
v ¥
X—— X

of fx and o~
We shall show that Z — X, the inverse image ﬁ}‘(aﬁx) of the (com-
pact) projective resolution of X, is the desired projective resolution of X.
Note first that Z — X is onto and Z — afX is an embedding by (6).
Moreover, Z — afX is an embedding onto a dense subset of afX, for
the closure of the image of Z — afX is transformed onto X (in virtue

Colloquium Mathematicum, t. XVIII i3
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of the fact that Z — X is onto) and o**: afX — X is irreducible. Since
apX is projective in ¢¢%#, Z — afX is a Cech-Stone embedding, by (11).
This embedding will be denoted also by fz: Z — pZ.

Now, the uniformization diagram is the Cech-Stone diagram

4 —— pZ
| |
2 ¥
X — X

Since Z — pZ is the inverse image of X — X (also in the usual
sense), Z — X is a perfect mapping.

The space Z is projective. To show this (&), let W — Z be a perfect
mapping. Since fZ = qpX is projective in €6#, fW — BZ is a retraction,
by 2.1. A right inverse BZ — W of W — fZ induces a right inverse
Z — W of W — Z, according to the fact that W — pZ transforms W —
— Bw (W) into BZ — Bz(Z), which is an induced mapping of a perfect one.
Thus W — Z is a retraction, and, by 3.1, Z is projective.

Finally, we prove that Z — X is a strong semi-monomorphism.

To prove this, let Z % Z be such that Z >Z - X = Z - X. Consider
the diagram

Z > (37
/ 4
7
¥
\V \

Y
X 3 [3X
consisting of two preceding diagrams joined by Z . Mapping Z — Z
is the induced, in the Cech-Stone compactification, mapping of Z 4z
— 7. After a cancellation by (an epimorphism) Z — pZ, we get the
commutativity of the right triangle of the diagram. Now, since fZ = afX
— BX is a strong semi-monomorphism, fZ — fZ is the identity. Hence,
Z5 7 BZ = Z — BZ. After a cancellation by (a monomorphism)
Z - BZ, 7 7 is the identity.
We know, by 1.1 and 1.2, that facts which we have proved imply
that Z — X is the, unique up to an isomorphism, projective c.r. reso-

lution of X.
Then, we may denote Z — X by oX: oX - X.

Z

(®) This may be proved also “topologically’’: Z is a dense subset of an e.d.
space, hence it is e.d., hence projective, by 3.3.
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By the way, we have proved that the operations a and g commute
(see e.g. [7]). More precisely, the diagram

Bax
aX — afX

| |
aXi( \Laﬁx
X—— X
Bx A

commutes.

5. A functorial character of the operation «. Let us notice
(see § 1) that the operation « is functorial iff, in diagram (4), ¥ — aX
is uniquely determined by Y—f> X.

9.1 (Henriksen and Jerison [6]). In €2 mapping Y — aX is
uniquely determined by Y—j> X iff f'(Int A) = Int f~1(A) for each regu-
larly closed subset A of X. -

Recall that A is reqularly closed in X if A is the closure of the interior
of A4 in X. Note that the inclusion < in the formula of 5.1, holds for
each continuous mapping. Call the mappings in 5.1 the Henriksen-
Jerison mappings.

Before we extend this result to ¥#, we prove a lemma.

(12) If f: Y — X 48 a Henriksen-Jerison mapping, then ff: fY — X
is so.

In fact, let A be a regularly closed subset of X. Then B = px'(4)
is a regularly closed subset of X and Int B = %' (Int A). Using these
facts, we get

Br'(Bf'(Int 4)) = pz'(Bf " (Int 4))
= f7'(fx' (Int 4)) = f~'(Int fx" (4))

= f~!(Int B) = Intf~'(B)

= Intf~(px'(4)) = Intp7' (8f " (4))
— 7 (It A (4)) = p7* (Int B (4)).
Thus, after a cancellation by B%', ff is a Henriksen-Jerison map-
ping.
5.2. The preceding result holds in €%, too: mapping Y — aX is uni-

quely determined by Y Lx iff f is a Henriksen-Jerison mapping.

The proof of one of the implications consists in a formal reduction
to the compact case.
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Let f: ¥ — X be a Henriksen-Jerison mapping. If ¥ — aX fills up
the diagram

X <« Y

then BY — faX = afX, the induced mapping of it in the Cech-Stone
compactification, fills up the diagram

afpX = faX
AN
v N
X «——pY

Clearly, if mappings Y =2 aX are different each of the other, then
BY = faX are so. But, by (12), pY — X is a Henriksen-Jerison map-
ping. Hence there exists only one mapping Y — apX filling up the
second of the diagrams. Thus there exists only one mapping filling up
the first one.

The proof of the converse implication is not formal. But the proof,
which will be omitted, is literally the same as that of [6] for the compact
case.
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