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0. Suppose that we want to go from some town a to another town b
but the direct way from a to b is damaged. Then we look for some town ¢
such that there exists a way from a to ¢ and from ¢ to b. If the way from a
to ¢ or from ¢ to b is also not to use, then we go to ¢ through some d or
from ¢ to b through some ¢, and so on. In this way we get some closure C,
of the set {a, b}. We obtain a more general concept considering the follow-
ing process: we build roads in some area starting from % different points
@y, Ggy ..., Gy, Where k>1. We choose some point ¢, ¢ {a,, ..., a;} and
we build a road from any a; to ¢,. Put 4, = {6y, a,, ..., a,}. We choose
a new point ¢, and we build ¥ new ways from some different points
byy... b€ A4, to ¢;. Put A, = A,U{c,}. We choose a new point ¢, build %
new roads from some k points of A, to ¢;, and so on. In this way we obtain
also some closure Cy({a,, ..., a;}) of the set {a,, ..., a;}, where all points a;
and all points ¢,, which we reach in a finite number of steps, belong to
the set Cy({a,, ..., @;}). Obviously, the proper language for such a con-
sideration is that of the theory of graphs. By a graph we mean a couple
® = (U; X), where U is a non-empty set, called the set of vertices or points,
and X is a family of 2-element subsets of U, called the set of edges(?).
The edges will be denoted by [ab] instead of by {a, b} to emphasize that
we think about edges in & graph. We accept all definitions and the termi-
nology from the cited book of Harary. In particular, if [ab] € X, then we
say that the vertices a, b are adjacent and we write a « b, and if we draw
the graph ®, then we connect the points a and b. A sequence a,a,... a,
of vertices is called a simple chain if all a; arc different and a; & a,_,
for 1 =1,2,...,n—1.

In this paper we consider the k-closure operators C, in graphs. In
Section 1 we describe namely some properties of k-closure operators and,
in particular, we prove that if ¢ € C;({a, b}) and c ¢ {a, b}, then there
exists a simple chain a,a;...a,cb, ... b, of elements of C,({a,bd}) such

(!) F. Harary, Graph theory, Reading, Mass., 1969.
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that ¢ = a, and b = b,. In Section 2 we give some characterization of
k-closed sets by means of some (k +1)-ary relation in a set U. In Section 3
we study the notion of k-C-generation defined as follows: a graph
® = (U; X) is k-C-generated (1< k < |U|) if for any A < U such that
|A] = k we have Oy(A) = U. In Section 3 we answer the following ques-
tion (see Theorem 5):

For 1 <k <n <N, what is the minimal integer m for which there
exists a graph ® = (U; X) such that ® is k-C-generated, |U| = n and
I Xl =m?

1. Properties of k-closure operators. Let ® = (U; X) be a graph and
let A = U. We say that a vertex ¢ € U is k-reachable (k is a positive integer)
from the set A if there exist k¥ different vertices a,, ..., a, € A such that
a, ¢ for : =1,2,...,k If ¢ is k-reachable from A, we write

c—A.
k

We say that the set A = U is k-closed in ® or, briefly, k-closed, if A
contains all vertices k-reachable from A.

We have

(i) The set U 18 k-closed, the iniersection of arbitrarily many k-closed
sels 18 k-olosed.

(ii) If |A| < k, then the set A is k-closed, and hence @ i3 k-closed
(k=1,2,...).

For A < U let us denote by C,(4) the smallest %-closed set con-
taining A.

By (i) and (ii) we have

(iii) The couple (U; C,) 18 a closure system for k =1,2,..., i.e. for
any A, B< U we have

A< Cd), AcB=Cl(4)<cCB), CCiA)) = Cr(4).

(iv) A set A = U 18 k-closed in ® if and only if C,(4) = A.

For A < U let us denote by R,(4) the set of all vertices ¢ for which
there exists a sequence

(1) Cry +e+9 Gy (0, =0)
such that
0] ‘;’A, 0’ ?AU{G,}, ooy OS?AU{GI,...,O,,_I}.
We have

(v) CR(4) = AUR,(A).
Proof. Obviously, AUR,(4) < C,(4). It is enough to show that
the set AUR,(A) is k-closed. Let

¢ «» AUR,(4),
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which means that there exist ¢, ..., 6, € AUR,(4) such that
C 4,-: {01, ey Gk}'

If {¢y...,¢} < A, then 0 € R, (4) and we are ready. Otherwise, we
assume that ¢;,...,0, e R (4) (A<m<k) and ¢y, ..., 0, € ANR,(A)
if m <%k Let ¢; denote the sequence of,..., 6, from (1) for the
element ¢; (1<t¢<m). Then ¢,t,...,¢,, ¢ is the sequence (1) for
the element ¢, which means that c €e A UR,(4),i.e. AUR,(A) is k-closed.

(Vi) Crin(4) € C(4) (1 <T<Ny).

This follows from the fact that if 0 {a,, ..., ax,,}, then

¢ ",':{al’ ey i}y

and from (v).
(vii) C,(4) = | D(a), where D(a) 18 the component containing a.

acAd

Let ® = (U; X) be a graph and let A = U. We define a sequence
Dy(4), D,(A), ... of subsets of U as follows:
We put D,(A) = A. If we have already defined D,(4), we put

Fn+1(A) = {u eU: u ‘;’Dn(A)} and Dn+l(A) = -Dn(A)UFn-H(A)'

Obviously,

(viii) a € C;(A) if and only if a € D, (A) for some non-negative integer n.

LemMA 1. If A = {a, b} = U and {0, d} = D,(A), then there exist two
vertex-disjoint simple chains a,...a, and b,...b, such that {a,,...,a,}
c D,(4), {by,..., b} <= D,(A), a =a,, b=Db, and ¢ =a,, d =b, or
¢ =by d = a,.

Proof. We prove our lemma using induction on n. If n = 0, our
chains are a and b. Let us assume that the lemma holds for any {e, f}
< D,(A) for some %> 0. Let {¢,d} < D, ,(4). We have 3 possibilities:

1° {e, d} < D,(4);

2° for one of the elements of {¢, d}, e.g. ¢, we havec e F, ,(4)\D,(4)
and deD,(A);

3° {0, d} = F,,(A)\D,(A).

In case 1° our lemma is true by induction.

In case 2° there exists {e,f} = D,(4) such that

o ?{o,f}.

One of the elements ¢, f, say ¢, must be different from d. By induction
we can assume that there exist disjoint simple chains a, ... a, and b, ... b,
of clements of D,(4) such that a =a,, b =b, and ¢ =a,, d = b, or
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¢ =b, and d = a,. Thus the chains a,...a,0 and b,...b, or a,...a,
and b, ... b satisfy the requirements of the lemma for o, d.
In case 3° there exist {e¢, f} =< D,(4) and {g, h} = D,(A) such that

c‘;’{e’f} and d?{g, h}.

We can assume that ¢ # h. By induction we can assume that there
exist two disjoint simple chains a, ... a, and b, ... b, of elements of D,(4),
where a = a,, b =b, and ¢ = a,, h = b, or ¢ = b,, b = a,. Then the
sequences @, ... a,¢, b, ... bdora, ... a,d, b, ... bo satisfy the requirements
of the lemma.

COROLLARY 1. If A = {a, b} = U and {c, d} = Cy(A), then there exist
two vertex-disjoint simple chains of elements of Cy(A) commecting a with ¢
and b with d, respectively, or connecting a with d and b with c.

THEOREM 1. If A ={a,b} < U and ceC,(4), c¢ A, then there
exists a simple chain a, ... a,0b, ... b,, where

a=a, b=>b and {a,...,a,by,...,0}< 0(4A).

Proof. Let » be the smallest integer such that ¢ € D,(4). Thus
ceF,(A)\D,_,(A) and there exist u,v € D,_,(A) such that

i {u, v}.

By Lemma 1 there exist disjoint simple chains a, ... a, and b, ... b,
of elements of D,_,(A), where a = a,, b = b,, w = a,, v = b, or u = b,
v = a,. Assume that ¥ = a, and v = b,. Thus the chain a, ... a,b, ... b,
satisfies the requirements of the theorem.

2. A characterization of %-closed sets in graphs. Let G = (U; X)
be a graph. In the graph ® we define a relationr, (k =1, 2, ...) as follows:
@yy ..., a4, 0> €1, iff @,, ..., a; are all different and b o {ay, ..., a}.
We write r,(a,, ..., a,, b) instead of {(a,,...,a;,d) €r,. Let U be

a set, |U| > 1. A (k+1)-ary relation r in U is called the relation of k-reach-
ability in U if r satisfies the following conditions:

(2) I {a,,...,a;,b)er, then the elements a,,...,a;,d are all dif-
ferent.

(B) 7@, ..., 1Y) > (@, ..., %,Y), where (i, ..., %) is an arbitrary
permutation of 1,..., k.

(4) Ifa,,...,a,be Uandforanyi(l<i< k)thereexistaj,...,a; e U
such that (a,ai,...,al,b>er or <(b,dl,...,ai, a) er, then
@y ...y, b>€er.
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THEOREM 2. The relation r(w,,...,x,,y) in U i3 the relation of
k-reachability in U if and only if there exists a graph & = (U; X) and
r 18 equal to 7, in ©.

Proof. The sufficiency is obvious, since <{a,, ..., a;, b) € r, mecans.

b ?{al, ceey @y}

Suppose that r satisfies (2)-(4). We define the graph & = (U; X}
forming the set X from all [uv], 4, » € U, for which there exist elements
Ugy ..oy W, SUCh that (u, ug, ..., ux, ») €r. So, if {a,, ..., a;, b> €r, then b
is k-reachable from {a,, ..., a;} by (2). Suppose that b is k-reachable from
{ay, ..., @;}. By the definition of X the assumptions of (4) are satisfied.
Hence, by (4), <@y, ..., a3, b> € r. Thus r = r, in ®, which completes the
proof.

Let U be a non-empty set and let 4 < 2V. If r(wy, ..., 2,,,) (k> 1)
is a relation of k-reachability in U, we denote by [2V] the family ob-
tained from 2V by removing from it all sets A for which there exists.
{@yy ey @y, b) €er, where {a,,...,a,} < A4, b ¢ A.

THEOREM 3. A 18 a family of all k-closed sets of some graph ® = (U; X)
if and only if A = [2V]" for some (k+1)-ary relation of k-reachability in U,

Proof. To prove the necessity it is enough to take as » the relation
r, in ®. To prove the sufficiency it is enough to define a graph ® as in
Theorem 2. Then r = r, in ® and a set B belongs to [2V] iff B is k-closed
in ®.

3. k-conmectivity in graphs. Let ® = (U; X) be a graph, where
|[U| = a>1 (a need not be finite). We say that the graph & is k-C-gen-
erated (1 < k < min(R,, a)) if for any A < U such that
|A| = k we have C,(4) = U. Obviously, ® is 1-C-gen-
erated if and only if it is connected. If ® is %-C-gen-
erated, then it need not be. (k+41)-C-generated: the
graph in Fig. 1 is 1-C-generated but it is not 2-C-

-generated.

Fig. 1

However, we have

(ix) If ® = (U; X) ©8 a graph, where |\U| = a > 2 and ® is k-C-gene-
rated for some k, 1 < k < min(X,, a), then ® ts m-C-generated for any m,
1<m<k.

Proof. Obviously, it is enough to show that & is (k¥ —1)-C-generated.
Let us take an arbitrary set 4, = {a,, ..., a,_,} = U. We have to prove
that C,_,(4,) = U. Since k < a, there exists in U an element, say a, ¢ 4,.



378 J. PLONKA

Put 4, = {a,, ..., a;}. Since k < a, there exists in U an element ¢, ¢ A,
such that
00 ‘;’ Alo

Thus ¢, had A,, which means that ¢, € C;_,(4,). So

(5) Ci-1(4o) = Cp_,(A), where A = {ay,...,a,_,, C}.

Since ® is k-C-generated, we have C,(4) = U, hence, by (vi),
€,_,(4) = U. Thus by (5) we get O,_,(4,) = U.

We say that a graph & = (U; X) is edge-minimal k-O-generated if &
is k-C-generated and no graph G’ = (U; X’), where X’ ¢ X and X' # X,
is k-C-generated. For any two positive integers k,n, where 1 < k < n,

we write
k+1
o(n, k) =Im—( ‘; )

The function ¢(n, k) will play an important role in our further con-
‘siderations.

THEOREM 4. For any positive integer k and any ocardinal a, where
'k < a, there exists a graph & = (U; X) which is edge-minimal k-C-generated,
for which |U| = a, and such that |(X| = a if a >N, and |X| = ¢(n, k) if
a=n<N,.

Proof. Let us take a set U, where |U| = a, and a subset U, = U,
‘where |U,| = k. Let us put X = X,UX,, where X, consists of all two-
-element subsets of U,, and X, consists of all two-element subsets [uv]
with w € U, and » € U\ U,. If a > N,, then, obviously, |X| =a. If a =n
< Ny, then

X1 = 41X = (5) +E—B) = p(n, B,

The proof that G* is edge-minimal k-C-generated is left to the reader.

A graph & = (U; X) is called complets if X consists of all two-element
subsets of U.

LeMMA 2. If & = (U; X) is a k-C-generated graph, |U| =n 1<k
< n <N,), then ® contains a complete subgraph G, = (U,, X,) such that
[T, = k.

Proof. If ¥ = 1, it is enough to put U, = {a} for arbitrary a e U.
If k> 1, let us choose different elements a,, by, ..., b, € U and put A4,
= {@y; bgy ..., b,}. Since k¥ <n and ® is k-O-generated, there must exist
a, € UNA, such that

ay © A,.

If k¥ =2, we put U, = {a,, a;} and we are ready.
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If ¥ > 2, then we continue our construction, i.e., if we have already
constructed

4, = {a,, ay, ..., a,, besrs -ey by}

where the subgraph generated by {a,, ..., a;} is complete, then — since
® is k-C-generated and k¥ <# — we can find an element a,, , € U\A4,
such that

Gipr 4.

So we put
Agpy = {81y ooy Ggpay by ooy b}

and we note that the subgraph generated by {a,, ..., a;,,} is complete.
Now it is visible that after k steps we obtain the set U, = {a,, ..., a;}
which generates a complete subgraph of (.

LeMMA 3. If & = (U; X) t8 a k-O-generated graph, (Ul =n (L <k
<n <N,), then |X| > p(n, k).

Proof. Let us take the set U, from Lemma 2. Denote by X, the set
of all edges connecting vertices in U,. By Lemma 2 we know that

Xo = U {a’ b}-
G.b.Uo
a%d
Thus |X,| = (;c) Since U\U, # 0 and ® is k-C-generated, there

must exist an element ¢, € U\ U, such that

¢, «+ U,.
1> U

Thus in X we have k new edges [a;¢;] (+ =1,2,...,k). Let us put
B, = {a,,..., a;, 0,}. If n —k > 1, there must exist o, € U\ B, and elements
ayy ..., 3, € B, such that

Os < {dyy ooy di}.

Thus in X we have k new edges [0,d;], and so on. It is now easy to
see that after n —k steps we exhaust the set U and

X1 > X+ —B) = ;) +h(n =) = p(n, B).

By Theorem 4 and Lemma 3 we get

THEOREM 5. The number ¢(n, k) is equal to the smallest integer m
for whioh there exists a k-C-generated graph G = (U; X) with |U| =,
X =m 1<k <n<N).
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COOROLLARY 2. If n> 1, then any edge-minimal (n —1)-C-generated
graph having n vertices is complete.

In fact, the graph must have at least (Z) edges, which means that
it is complete.

d c
@ a b
Fig. 2 Fig. 3

Remark 1. One could suspect that any edge-minimal k-C-generated
graph having exactly n vertices, where 1 < k < n < N,, has ¢(n, k) edges.
This, however, is not true, since the graph in Fig. 2 is edge-minimal 2-C-gen-
erated, has 6 vertices and 10 edges although ¢(6, 2) = 9.

Remark 2. If ¥ = 2, then the number 6 is the minimum of all
such numbers » for which there exists a 2-C-generated edge-minimal
graph & = (U; X), where |U| =n > 2 and |X|> ¢(n,2). This follows
from the existence of the graph in Fig. 2 and from

THEOREM 6. If ® = (U; X) 18 a 2-C-generated edge-minimal graph,
where |U| =n, 3 < n< b, then | X| = ¢(n, 2).

d o4 d e
a c a ¢ a ¢
e b b e
Fig. 4 Fig. 6 Fig. 6

Proof. By Lemma 2 there exists in ® at least 1 edge, say [ab], where
a,be U. Since n > 3, there exists ¢ € U such that

¢ {a, b}.

If n = 3, then ® is a triangle and |X| =3 = ¢(3, 2). If » > 3, then
there exists d € U such that
d e {a, b, c}.

Thus, if n = 4, we obtain (up to isomorphism) a graph from Fig. 3
having b edges and ¢(4,2) = 5.
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Let n = b and let ¢ be the 5-th vertex of . Since ® is k-C-generated,
we have (up to isomorphism) one of the cases from Figs. 4-9.

In cases 4-8 we obtain edge-minimal 2-C-generated graphs having
¢(6,2) = 7 edges. Case 9 leads to a contradiction. In fact, the graph

e d a a

a c Q ¢ a e
b b b
Fig. 7 Fig. 8 Fig. 9

from Fig. 9 is not 2-C-generated. However, if we add the edge [ce], then
the edge [be] can be removed. If we add the edge [ae], then the edge [be]
can be removed. If we add the edge [bd], then the edge [ab] can be removed.
Thus, case 9 does not lead to an edge-minimal 2-C-generated graph.

Regu par la Rédaction le 20. 12. 1977



