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1. Introduction. We shall consider only metric spaces and by a Cantor set
we shall mean any space homeomorphic to the usual Cantor discontinuum
C < E!. A space X containing a Cantor set will be called Cantor homogeneous
if for any two Cantor sets 4, B < X there is an autohomeomorphism h of
X mapping A4 onto B. It is well known that closed manifolds of dimension < 2
are Cantor homogeneous but n-manifolds with n > 2 as well as the Hilbert
cube are not, since they contain wild Cantor sets (cf. [3] and [4]). The authors
do not know other continua which are Cantor homogeneous; moreover, it is
easy to see that the universal Menger curve M3 (whose homogeneity has been
proved by Anderson in [1]) is not Cantor homogeneous, and we know from
the private communication from M. Bestvina who proved the homogeneity of
the remaining universal Menger continua M2"*! (see [2]) that they also are not
Cantor homogeneous. Thus the problem arises to describe all continua which
are Cantor homogeneous. (P 1377)

In Section 2 we shall prove some properties of Cantor homogeneous
continua, in particular we show that they are n-homogeneous for any
n=1,2, ... and locally connected.

Related, problems concern the arcwise homogeneity, where a space
X containing an arc is called arcwise homogeneous if for any two arcs K, Lc X
there is an autohomeomorphism h of X such that h(K) = L. In the class of
arcwise ‘connected continua the same examples as before are known to be or
not to be arcwise homogeneous, and we do not know if for this class these two
kinds of homogeneity coincide. This is not the case for non-arcwise connected
continua, since, as we show in Section 3, solenoids are arcwise homogeneous
and are not Cantor homogeneous.

Observe here that any arcwise connected and arcwise homogeneous space
is 2-homogeneous, because any homeomorphism of arcs must preserve the
end-points. It follows from a theorem of Ungar (cf. [10]) that any continuum
satisfying these assumptions is strongly 2-homogeneous and locally connected.
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However we do not know if such a continuum must be n-homogeneous for
n> 2. -

All known examples of arcwise connected and Cantor (or arcwisg)
homogeneous continua different from S? satisfy the following stronger con-
dition (cf. [7]): A space X ‘containing a Cantor set (an arc) will be called
strongly Cantor (arcwise) homogeneous if for any homeomorphism h,: A— B,
where A, B « X are Cantor sets (arcs), there is an autohomeomorphism h of
X such that h|, = h,,. It is easy to see that S* is strongly arcwise homogeneous,
but it is not strongly Cantor homogeneous. We do not know if continua
different from S which are Cantor homogeneous are also strongly Cantor
homogeneous and if any arcwise homogeneous continuum is also strongly
arcwise homogeneous.

In Section 3 we shall prove that any arcwise connected continuum
different from S! which is strongly arcwise homogeneous is also strongly
Cantor homogeneous. We do not know whether the other implication
holds.

2. Continua which are Cantor homogeneous. The following easy proposi-
tion shows that the assumption of connectivity in the next results can be
replaced by a weaker one:

2.1. PROPOSITION. Any Cantor homogeneous compact space X without
isolated points is connected.

Proof Since the Cantor discontinuum C < E! is not Cantor homo-
geneous, X contains a non-degenerate component P. There are two Cantor sets
A, B c X, where

AcP and BnP#O+#Bn(X\P).

Evidently, no autohomeomorphism of X maps A onto B..

The next Propositions 2.2 and 2.3 follow from Theorem 2.7 below, since
Ungar has proved in [10] that the 2-homogeneity of a continuum implies local
connectedness. However, we include their independent and simpler proofs.

2.2. PROPOSITION. Any Cantor homogeneous continuum X is homogeneous.

Proof. Denote by H the group of all autohomeomorphisms of. X and
consider the orbit Hx, of a point x,€ X. Since the group H is topologically
complete, Hx, is an analytic subset of X. Assume that Hx, # X. If Hx, is
uncountable, then it contains a Cantor set A4 (cf. [5], p. 479). Let B < X be any
Cantor set-such that B\Hx, # 9. Since every autohomeomorphism of X maps
any orbit onto itself, we obtain a contradiction with the Cantor homogeneity
of X.

If Hx, is countable, then there are two Cantor sets A, B < X such that
An Hx, = and x,eB, which also yields a contradiction.

2.3. PROPOSITION. Any Cantor homogeneous continuum is locally connected.
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Proof. First, observe that a continuum X is locally connected iff for any
Cantor set A = X and for any xe A4 the following condition is satisfied:

(») For each neighborhood U of x in X we have
{x}g C,nA,

where C, denotes the component of U containing x. -

Indeed, it suffices to observe that if X is not locally connected' in x, then
there is a Cantor set A = X containing x such that () is not satisfied. In fact,
by the absence of the local connectivity of X in x, there are a closed
neighborhood U of x and a sequence {C,};-; of components of U such that
xeLiC,. Since these components are non-degenerate, each C, contains
a Cantor set A, such that

diamA4, < 1/n and {x} =LimA4,.
Then

A= n@l A, v {x}

is a Cantor set containing x such that (x) is not satisfied. -

Now, assume that X is a Cantor homogeneous continuum. To prove the
assertion, it suffices to find a Cantor set A — X such that for each xe A4 the
condition (*) is satisfied. For this purpdse we shall construct a sequence
{Fi, s}, where i;=0,1 and

diamF;, ; <1/k for k=1,2,...,

of compact subsets of X as in the usual construction of the Cantor
discontinuum. To find F, and F, choose two open non-empty subsets G,, G,
of X such that

g diamG;<1 and G,nG,=0.

Choose a component C; of G, and define F; = C;. To find Fo, and F,, choose
two open sets H,, H, < X such that

diamH;<1/2, H,nH, =@ and H;nC,#9.

Choose any component D, of H; n C, and define F,; = D;. The construction is
extended in a natural way and the desired Cantor set A4 is defined by the
formula »

A= ﬂ U {Fi,..i I = 0, 1}.
k=1

Let (X, d) be a compact space and consider the space 2* consisting of
closed non-empty subsets of X with Hausdorff metric D. Denote by € the
subspace of 2* consisting of Cantor sets, and by H(X) the group of all
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autohomeomorphisms of X. The following proposition is a version of the
well-known Effros theorem concerning homogeneous spaces (cf., e.g., [10]),
applied to the space €.

2.4. ProPOSITION. If (X, d) is a compact, Cantor homogeneous space, then
for each € > 0 and each Cantor set C €€ there exists a 6 > 0 such that. if C'€ €
and D(C, C') <, then there exists an autohomeomorphism he H(X) such that

h(C)=C and d(x, h(x)) <e for any xeX.
Proof. First notice that the space € is topologically complete. Indeed, let
F,={A€2*: there is a connected set B< A with diamB > 1/n},
H, = {Ae2*: there is pe A such that An{xeX: d(x, p) < 1/n} = {p}}.
Then both F, and H, are closed subsets of 2¥ and

¢=2°\(| F,u | H,).
n=1 n=1
Thus % is a G,-subset of the compact space 2¥.

Since (X, d) is Cantor homogeneous, the group (H(X), d) acts transitively
on ¥, where d is the usual supremum metric, and one sees that all the
assumptiong of the Effros theorem are satisfied. Applying this theorem we
obtain the assertion.

The next lemma implies the main result of this section. For each set A let
F(A) = {(xy, ..., x,)e A" x; # x; for i # j}.

Recall that a space X is strongly locally n-homogeneous if for any (x,, ..., x,)
€ F,(X) there is an ¢ > 0 such that if

(¥ys--» y)EF,(X) and d(x;, y)<e for i<n,
then there is an he H(X) such that h(x) =y, (cf. [10]).

25. LEMMA. If X is a Cantor homogeneous continuum, then X is strongly
locally n-homogeneous for each n=1, 2, ...

Proof. Our proof is based on a corollary to Theorem 1 of Mycielski’s
paper [8]. For convenience of the reader we shall refer to the paper [4], where
the needed corollary is given explicitly. .

First, notice that F,(X) is a Polish space (i.e., topologically complete and
separable} and X"\F,(X) is of the first category (of Baire) in X". For any
X =(xy, ..., x,)€F,(X) denote by O(x) the orbit of X under the action of the
group H(X) on F,(X); ie,

O0(%) = {h(%) = (h(x,), ..., h(x,)): he H(X)}.
Then O(X) is an analytic subset of F,(X), and therefore it has the Baire property
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(cf. [5], p. 482). Notice that the strong local n-homogeneity of X means that
each orbit O(X) is open in F,(X).

Assume that there is an X € F,(X) such that O(x) is of the first category in
X". In virtue of [4], Lemma 2.2, there is a Cantor set C < X such that

F(C)n 0% =@.

On the other hand, there is a Cantor set C' = X containing the “coordinates”
Xy, -.., X, of X. The existence of a homeomorphism he H(X) mapping C onto
C’ gives a contradiction, because O(X) is the orbit of X in F,(X).

Thus any set O(x) is of the second category in X", and therefore in F,(X).
Sinc€ it has the Baire property, there is an open non-empty set U in F,(X) such
that U\O(X) is of the first category. Observe that U < O(x). Indeed, in the other
case there is a y € U\O(X). Thus the orbit O(y) intersects U on the set of the first
category. On the other hand, there is an open subset V of F,(X) such-that
V\O(y) is of the first category. This contradicts the fact that there is an
autohomeomorphism of F,(X) mapping y onto a point Ze Vn O(y). Con-
sequently, U = O(X), and therefore the set

0(%) = {J {h(U): he H(X)}
is open in F,(X), which completes the proof.

2.6. Remark. Our proof of Lemma 2.5 shows in fact the following
equivalence: Let X be a Polish space and H a topological group which is also
a Polish space acting continuously on X. Then each orbit is open in X iff each
orbit is of the second category in X.

2.7. THEOREM, If X is a Cantor homogeneous continuum which is (topologi-
cally) different from S!, then X is strongly n-homogeneous for eachn =1, 2, ...

.Proof. First notice that the strong local 1-homogeneity and the connect-
edness of X imply the homogeneity of X. .

Assume that there is a finite set which disconnects X. Then X contains
a point which locally disconnects X, and therefore each xe X locally
disconnects X. By Whyburn’s theorem [12], any point locally disconnecting
X (except of at most countably many of them) is a point of order 2 (in the sense
of Menger-Urysohn). By the homogeneity of X, each xeX is a point of
order 2, which implies that

XS !

(cf. [6], p. 294).

Thus no finite set disconnects X, which implies, by Lemma 3.9 of [10],
that F,(X) is connected for n = 1, 2, ... This fact and Lemma 2.5 imply that
X is strongly n-homogeneous.

By Theorem 3.3 of [11] we have
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2.8. COROLLARY. Any Cantor homogeneous continuum is countable dense
homogeneous.

2.9. COROLLARY. Let X =X x...xX,, where n>1 and each X, is
a Peano curve. Then X is Cantor homogeneous iff X is homeomorphic either with
S! or with the torus S' x S'.

Proof. If n = 1, then the homogeneity of X and Anderson’s theorem [1]
imply that X = X, is homeomorphic either with S* or with M3. 1. Since M3 is
not Cantor homogeneous we have

X—=_5'

top

If n > 1, then the 2-homogeneity of X and a corollary given in [9] (p. 345)
imply that

. X=—8'x...xS".

top
Since no n-manifold with n > 3 is Cantor homogeneous, we infer that
X=S5"x§'.

top

2.10. COROLLARY. Let X = X, x...xX,, where n>1 and each X, is
a compact, connected ANR-space of dlmenswn < 2. Then X is Cantor
homogeneous iff X is a closed manifold of dimension < 2.

Proof. The homogeneity of X and Theorem 2 in [9] imply that X is
a closed manifold. As before, we have dimX < 2.

3. Arcwise homogeneity of continua and a connection with Cantor homo-
geneity. First, let us show the following

3.1. ExaMPLE. Each solenoid X is strongly arcwise homogeneous and it is
not Cantor homogeneous.

Proof. A space X is a solenoid provided there exists a sequence {p,} of
positive integers greater than one such that

X = li—t—n{Xn’ fn}’
where
X,=8'={zeC: |z2| = 1}

and the bonding map f,: X,+, = X, is defined by f,(z) = zP~. It is well known
that each solenoid is an indecomposable continuum whose composants, being
continuous one-to-one images of the real line E', can be ordered in some way.
Now, given two arcs K, =a,b,, K, =a,b, in X and a homeomorphism

ho: (K4, a;)—(K,, a,)

we can assume that a, = a, and that the ordering of K; from g, to b; coincides
with the ordering of the composant containing a,. Indeed, using the fact that
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each solenoid is a topological group (with the neutral element e), for any arc
K = ab = X one can find two autoisomorphisms f, g of X such that f(a) = e
and

J(f(K)=f(K)=ef(b), gle)=Sfb), g(f)=e.
Next, if K, = a, b,, K, = a, b,, then the arc K, U K, is contained in an open
subset U of X homeomorphic with the product ]0, 1[ x C, where C is the
Cantor discontinuum. The homeomorphism h, can be extended to an
autohomeomorphism h of X which is the identity outside U.

Considering two Cantor sets A, B < X, where A is contained in a com-
posant of X and B intersects at least two composants, it is evident that X is not
Cantor homogeneous (cf. Proposition 2.3).

As noticed in the Introduction, in the class of arcwise connected continua
such an example does not exist, and we shall prove the following

3.2. THEOREM. Each arcwise connected continuum different (topologically)
from S' which is strongly arcwise homogeneous is also strongly Cantor
homogeneous.

First notice the following

3.3. PrOPOSITION. Each arcwise connected and arcwise homogeneous con-
tinuum X is strongly 2-homogeneous, locally connected and, in the case where
X is (topologically) different from S, it contains no locally disconnecting points.

Proof. As noticed in the Introduction, the strong 2-homogeneity and the
local connectivity of X follow from Ungar’s paper [10]. The fact that
X contains no locally disconnecting points follows from Whyburn’s theorem
[12] and the homogeneity of X, similarly as in the proof of Theorem 2.7.

3.4. COROLLARY. If X satisfies the assumptions of Proposition 3.3, then each
Cantor set A < X is contained in an arc.

Proof. This follows from Whyburn’s theorem [13] which says that if X is
a locally compact, locally connected space with no locally disconnecting points,
A is a compact totally disconnected subset of X and p, ge A with p # q, then
there exists an arc Lc X with end-points p, g containing A.

To prove Theorem 3.2 we need something more, namely, given a linear
ordering < of 4 which conforms to the topology of A, we should find an arc
L< X containing 4 such that the ordering < coincides with the ordering of
A induced by the natural ordering of the arc L.

For this purpose, let us prove first the lemmas:

3.5. LEMMA. Let X be a locally compact, locally connected and connected
space such that no region (i.e., open and connected set) in X is disconnected by an
arc. Let K — X be an arc with end-points p, q and with a linear ordering < from
p'to q and let A= K be a compact, totally disconnected set. Given any subarc
J =ab of K with a given ordering < from a to b such that

D#JnAc],
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there are an arc L= pq < X containing A and a subarc J' = a'b’ of L such that
the subarc pa’ of L does not intersect A, and

JnAcl cJ<cJ and a<b onlJ.

Proof. We shall assume that b < a on the arc K, because in the other case
the proof is similar, but simpler. Since no arc disconnects X, the set G = X\K
is a region in X. Since the set-of the points of K which are accessible from G is
dense in K, there are two points p'e K, a’eJ and two arcs J,, J, such that

p’ejl, a'ejz, J\{r'} =G, Jz\{;'}cG

and the subarcs pp’ and a’a of K do not intersect A. Join the end-points of the
arcs J,, J, belonging to G by an arc J < G. Evidently, the union J, uJuUJ,
contains an arc J' joining p’ and & and such that J' = G.

Now, let us enlarge the arc J' to an arc J” such that

peJ’, J'oJ, J\J/JeoK and J' oA Nnpa,

where pa’ denotes the suitable subarc of the arc K. Find a subarc K’ of K such
that

geK', a¢K' and K >Angad,
where ga’ < K. Since no region in X is disconnected by an arc, the set
H = X\(J""UK)

is a region in X. We can assume that the end-points of the arcs J’ and K’
different from p and g are accessible from H, respectively, by the arcs L, and
L,. Join the end-points of these arcs lying in H by an arc L, < H. It is clear
that the union J" UL, uLyuL,uUK’ contains the desired arc L.

3.6. LEMMA. Let X satisfy the assumptions of Lemma 3.5, let A = X be
a compact, totally disconnected set containing more than one point and let < be
a linear ordering of A which conforms to the topology of A. Then there is an arc
L< X containing A such that the ordering < coincides with the ordering of
A induced by the natural ordering of L.

Proof. First notice that the assumptions on X imply that X contains no
locally disconnecting points, and therefore, by [13], there is an arc L, = pg < X
such that 4 = L, and that the first and the last points of A in the ordering
< coincide, respectively, with the first and the last points of 4 in the natural
ordering of L, from p to g. We can easily find a sequence

gl = {Gll’ ey Glh}’ gz = {6219 ceey GZkz}’ e

such that G;; is a region in X intersecting 4, G;; is compact, G;;n G;; = @ for
J #J, \J{Giy: j < k;} covers A for any i, diamG;; < 1/i for any j < k; and the
covering

gi+1 = {Gi+l 19 == Gl'+1 kH-l}
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is a refinement of the covering ¥, for each i. We can also assume that G;; N L, is
a subarc of L, and it lies in G;; except of its end-points.

Now we shall construct inductively a sequence L, L,, ... of arcs joining
p with q and containing A and a sequence C,, C,, ... of arc-region chains with
C; o L,;, where the arc-region chains are defined similarly as in [13]: A set

C=D0UD1U...UD2]‘_1UD2"

is an arc-region chain in X if D, D,, ..., D, are some arcs, D,, D5, ..., Dy,
are compact sets which are the closures of regions in X, D,nD ;#9 iff
li—jl < 1, and D, n D;,, is a one-point set which is an end-point of this one of
D;, D; ., which is an arc. After constructing these two sequences, we shall define
a desired arc L by the formula

[+ ]
L= ()C,.
’ i=1
To define the arc L,, consider the covering ¢, of 4 and for each set
G,; denote by J,; the arc G,;n L,. Let
jlj = {P1j» 41}
where p,; is chosen so that if a,;, b,; are, respectively, the first and the last
points of AnJ,; in the ordering <, then these points lie on the arc
Jj successively as follows: p,;, a,;, by;, q;j. We can and do assume that the
succession of the regions Gy, ..., Gy, <Qincides with the ordering < of the

points a,, a;,, ..., aj,. Now, proceeding by induction and using Lemma 3.5
one can easily construct an arc L, < X and a sequence of its subarcs

11 = P114115 -+ s S1ky = Pk, ks
such that
and the ordering of these points on the arc L, is as follows:

/7 ’ 4 7 / ’
P, P11, @11, by1, 411, P12, 812, b12, 412, -y Piky> Gik,» bum 91k,> 9-

To define the arc-region chain C;, first construct for any arc J); a region
’lj c Glj such that

’ljnL1=J'lj’ jlleGllj, G’IJﬁG'lk=g forj#k.

It is clear that the set C, = L, U Gj; ... U G}, can be described in a natural
way as an arc-region chain.

Now, to define the arc L, we replace each of the arcs J); for j < k, by
another arc J7; with the same end-points and lying in G} ;. For this purpose we
consider the next covering 4, of A, where we can assume that ¢, is
a refinement of the covering

grl = {Glll, ooy Gllh}.
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Considering a given region G ; (which we treat as a space), some subarc of the
arc J); containing J';; 1 A and contained in G, and the covering of J';; " 4 by
those elements of ¢4, which are contained in G};, we proceed now to obtain

1; similarly as before to obtain L,. After constructing the arcs Ji,, ..., Jix,,
we define :

ki k1
L,=@C\U Jyv U Ji;
j=1 j=1

Replacing the regions G,,, ..., G5, by smaller ones G5, ..., G%, similarly as
before, we construct the arc-region chain '

C2 =L2UG'21U...UG'2k2.

We construct inductively the arcs L,, L,, ... and the arc-region chains
C,,C,, ..., where C;> A4 and C; o C;,, for each i. It is clear that the set

L= () C;
i=1
is an arc with end-points p, g containing A (cf. [13]) and, moreover, the
ordering < on A coincides with the ordering of this set induced by the natural
ordering of L from p to gq.

3.7. LEMMA. Let X be an arcwise connected continuum containing more than
one point and different (topologically) from S*. If X is arcwise homogeneous, then
no region in X is disconnected by an arc.

Proof. By Proposition 3.3, X is locally connected and has no locally
disconnecting points. Assume that there is a region G in X which is
disconnected by an arc K <= G. Replacing K by a subarc L such that there is
a component C of G\K with Lc C and (K\L)n C = @ if necessary, we can
assume that there is a component C of G\K such that K = C.

Moreover, we can assume that there are at Jeast two such components of
G\K. Indeed, assume that C satisfies K = C and let C’ be another component
of G\K. Denote by K’ the subarc of K such that

KcC and (K\K)nC =0.

Then there are at least two components of G\K’ containing K’ in their closures,
namely C' and the component of G\K’ containing C U (K\K’). Consequently,
since X is arcwise homogeneous, it follows that for any arc J = X there is
a region G o J disconnected by J and such that there are at least two
components of G\J containing J in their closures. :

Now, choose an arc J, = pq in X with a given parametric representation
from p to g on the interval [0, 1] = E'. For any te[0, 1] denote by J, the
subarc of J, one end-point of which is p and the other is the point g, of J, with
the parameter t. Denote by G, a region in X containing J, such that there are at
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least two components of G,\J, containing J, in their closures. Then there are
&, > 0 and an uncountable subset T of the interval ]0, 1] such that for any te T
the region G, contains the ball

' B, = {xeX: d(x, J)) < &}.

Thus there is a t,€]0, I[n T such that any neighborhood of t, in JO, 1[
contains uncountably many elements of T (cf. [5], p. 251). Find a region
G 5 Jy, and an interval

[to—6, to+0] =10, 1[
such that
Gc{xeX: d(x, J,) <é&/2}, Jp+s<G,

G N J, is a ray with end-point p, and for any te T [t,—4, t,+ 6] the region
G, contains G. Since for any te Tn[t,—9, t,+4J] there are at least two
components of G\J, containing J, in their closures, we infer that there is
a component C, of G\J, such that C, contains g,, but contains no other point of
the subarc q,q of J,. Since the interval [t,—4d, t,+ ] contains uncountably
many elements of T, the set G\J, has uncountably many components, which is
a contradiction completing the proof of the lemma.

Proof of Theorem 3.2. Let X satisfy the assumptions of Theorem 3.2.
By Proposition 3.3 and Lemma 3.7, X satisfies all the assumptions of Lemma
3.6. Consider two Cantor sets C, C' < X and a homeomorphism h, of C onto
C'. By Corollary 3.4 there is an arc L< X containing C and such that both the
end-points p, g of L belong to C. Consider the linear ordering of C induced by
the natural ordering of the arc L from p to g. The homeomorphism h, induces
an ordering < of C’, which conforms to the topology of C'. By Lemma 3.6,
there is an arc L' =p’'q' < X such that p’' = hy(p), ¢ = hy(q), L' > C' and,
moreover, the ordering < of C’ coincides with that induced by the natural
ordering of the arc L' from p’ to q'. Evidently, the homeomorphism h, extends
to a homeomorphism h, of the arc L onto L. By the strong arcwise
homogeneity of X, the homeomorphism h, extends to the desired auto-
homeomorphism h of X.
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