

BV

W. ŻAKOWSKI (WARSZAWA)

1. Introduction. Consider in an n-dimensional Euclidean space E_n , $n \geq 3$, a system of p+1 closed (n-1)-dimensional Lapunov surfaces $S_0, S_1, S_2, \ldots, S_p$ $(p \geq 0)$ having no common points. The surface S_0 is the boundary of a bounded region Ω_0 containing the surfaces S_1, S_2, \ldots, S_p . Let Ω denote the set of all those points of the region Ω_0 which do not lie on the surfaces S_1, S_2, \ldots, S_p . If p = 0, then $\Omega = \Omega_0$. The set Ω is the sum $\sum_{i=1}^q \Omega_i$ of separable regions $\Omega_1, \Omega_2, \ldots, \Omega_q$, which may be simply-connected or multi-connected regions.

Let f(y) be a complex function integrable in any one of the regions $\Omega_1, \Omega_2, \ldots, \Omega_q$ and N(x) — a complex function defined in each point $x \neq (0, 0, \ldots, 0)$ by the formula

(1)
$$N(x) = K(x')|x|^{-n},$$

where x' denotes the central projection of the point x on the unitary sphere ω , the centre of which is the point (0, 0, ..., 0); we then have $x = |x| \cdot x'$. We assume that the function K(x') satisfies on the sphere ω the condition of Hölder,

(2)
$$|K(x') - K(y')| \leq k_{\omega} |x' - y'|^{h_{\omega}}, \quad 0 < h_{\omega} \leq 1,$$

and, moreover, the condition

XVIII

(3)
$$\int_{x} K(x') dx' = 0.$$

After Zygmund [5] and Pogorzelski [2] and [3] we define the singular integral of the function f over the set Ω by

(4)
$$\int\limits_{\Omega} N(x-y)f(y)\,dy \ \underset{\varepsilon\to 0}{\overline{\mathrm{df}}} \ \lim\limits_{\varepsilon\to 0} \int\limits_{\Omega_{\varepsilon}} N(x-y)f(y)\,dy \,,$$

where Ω_{ε} denotes the set of all points y of the set Ω for which the distance |x-y| is greater than ε .

In connection with the investigation of properties of the multidimensional singular integrals (4), Pogorzelski [2] introduced a certain class of functions the definition of which will now be recalled.

We denote by \mathfrak{H}_a^h the class of all complex functions f(x) defined for $x \in \Omega$, which satisfy the inequality

$$|x - x_s|^a \cdot |f(x)| \leqslant M_f$$

and the generalized condition of Hölder

(6)
$$|x-x_s|^{a+h}|f(x)-f(y)| \leq K_f|x-y|^h,$$

where |x-y| denotes the Euclidean distance of two arbitrary points x and y situated within any of the regions $\Omega_1, \Omega_2, \ldots, \Omega_q$; x_s is the point of one of the surfaces S_0, S_1, \ldots, S_p for which the distance $|x-x_s|$ reaches, for a fixed $x \in \Omega$, a lower limit; we assume that $|x-x_s| \leq |y-y_s|$; the parameters α and h are fixed for a given class and satisfy the conditions

(7)
$$0 \le a < 1, \quad 0 < h < 1, \quad a+h < 1;$$

the positive constants M_f and K_f may depend on f.

Denote by $\mathfrak{S}_a^h(M_f, K_f)$ the subclass of the class \mathfrak{S}_a^h which is obtained by fixing the values of M_f and K_f independently of f.

In the sequel we make use of the following theorems:

THEOREM OF POGORZELSKI [2]. If a complex function f(y) defined in the set Ω is of class $\mathfrak{H}_a^h(M_f, K_f)$, a > 0, then the function $\varphi(x)$ defined in every point $x \in \Omega$ by the singular integral

(8)
$$\varphi(x) = \int_{\Omega} N(x-y)f(y) dy$$

is of the class $\mathfrak{H}_a^{h'}(C_1M_f + C_2K_f, C_1'M_f + C_2'K_f)$, where $h' = \min(h, h_\omega)$ when $h \neq h_\omega$; C_1, C_2, C_1' , and C_2' are positive constants independent of f.

THEOREM OF TICHONOV [4]. If a continuous operation, defined in a linear, metric, locally convex and complete space, transforms a closed, convex and compact set into itself, then there exists at least one fixed point of this operation.

2. System of integral equations. Consider in the set Ω an infinite system of non-linear singular integral equations

(9)
$$\varphi_{\nu}(x) = F_{\nu} \left\{ x, \int_{\Omega} N_{\nu}(x-y) R_{\nu}[y, \varphi_{1}(y), \varphi_{2}(y), \ldots] dy, \varphi_{1}(x), \varphi_{2}(x), \ldots \right\}$$

$$(\nu = 1, 2, \ldots)$$

with unknown functions $\varphi_1(x)$, $\varphi_2(x)$, ...

We make the following assumptions:

I. Ω is a set defined as above.

II. $F_{\nu}(x, v, u_1, u_2, ...), \nu = 1, 2, ...,$ are complex functions defined in the domain

(10)
$$x \in \Omega, \quad v \in \Pi, \quad u_i \in \Pi, \quad i = 1, 2, \dots,$$

where Π denotes a plane of a complex variable; moreover,

(11)
$$|F_{\nu}(x, v, u_1, u_2, \ldots)| \leq \frac{m_F}{|x - x_s|^a} + k_F \left(|v| + \sum_{i=1}^{\infty} m_i |u_i| \right)$$

and

$$(12) \quad |F_{\nu}(x, v, u_{1}, u_{2}, \ldots) - F_{\nu}(\tilde{x}, \tilde{v}, \tilde{u}_{1}, \tilde{u}_{2}, \ldots)|$$

$$\leq \frac{k'_{F}|x - \tilde{x}|^{h}}{|x - x_{s}|^{a+h}} + k_{F} \left(|v - \tilde{v}| + \sum_{i=1}^{\infty} k_{i}|u_{i} - \tilde{u}_{i}| \right), \quad \nu = 1, 2, \ldots,$$

where x and \tilde{x} are arbitrary points situated in any one (both in the same) of the regions $\Omega_1, \Omega_2, \ldots, \Omega_q$; we assume that $|x-x_s| \leq |\tilde{x}-\tilde{x}_s|$. Indices a and h satisfy conditions (7); moreover, a > 0, $m_i > 0$ and $k_i > 0$ for $i = 1, 2, \ldots$; we assume the convergence of numerical series $\sum_{i=1}^{\infty} m_i$ and $\sum_{i=1}^{\infty} k_i$, and denote their sums by m_{∞} and k_{∞} respectively; m_F, k_F and k_F' are given positive constants.

III. $N_r(x)$, v = 1, 2, ..., are complex functions defined in every point $x \neq (0, 0, ..., 0)$ by the formula $N_r(x) = K_r(x')|x|^{-n}$, where the meaning of x' is the same as in formula (1). Functions $K_r(x')$, v = 1, 2, ..., satisfy the condition of Hölder with common constant k_{ω} and common index exponent $h_{\omega} > h$; moreover,

(13)
$$\int_{w} K_{\nu}(x') dx' = 0, \quad \nu = 1, 2, \dots$$

IV. $R_{\nu}(y, w_1, w_2, ...), \nu = 1, 2, ...,$ are complex functions defined in the domain

(14)
$$y \in \Omega, \quad w_i \in \Pi, \quad i = 1, 2, ...;$$

moreover,

(15)
$$|R_{\nu}(y, w_1, w_2, \ldots)| \leq \frac{m_R}{|y - y_s|^a} + \sum_{i=1}^{\infty} m_{Ri} |w_i|$$

and

(16)
$$|R_{\nu}(y, w_1, w_2, \ldots) - R_{\nu}(\tilde{y}, \tilde{w}_1, \tilde{w}_2, \ldots)|$$

$$\leqslant rac{k_R |y- ilde{y}|^h}{|y-y_s|^{a+h}} + \sum_{i=1}^{\infty} k_{Ri} |w_i - ilde{w}_i|,$$

where y and \tilde{y} are arbitrary points situated in one of the regions Ω_1,\ldots,Ω_q ; $|y-y_s|\leqslant |\tilde{y}-\tilde{y}_s|, \quad m_{Ri}>0 \quad \text{and} \quad k_{Ri}>0 \quad \text{for} \quad i=1,2,\ldots$ We assume the convergence of numerical series $\sum\limits_{i=1}^{\infty}m_{Ri}$ and $\sum\limits_{i=1}^{\infty}k_{Ri}$, and we denote their sums by $m_{R_{\infty}}$ and $k_{R_{\infty}}$ respectively; m_R and k_R are given positive constants.

V. The condition

(17)
$$k_F < \min \left[\frac{1}{k_{R_{\infty}}(C_2 + C_2') + k_{\infty}}, \frac{1}{m_{R_{\infty}}(C_1 + C_1') + m_{\infty}} \right]$$

is satisfied, where C_1 , C_2 , C'_1 and C'_2 are constants as defined in the theorem of Pogorzelski.

3. Theorem. If assumptions I-V are satisfied, then the system (9) has at least one solution in the class \mathfrak{H}_a^h .

Proof. Consider a space Λ the points U of which are all infinite sequences $\{\varphi_n(x)\}$ of complex functions defined in the set Ω , continuous in every region Ω_j , $j=1,2,\ldots,q$, and satisfying the condition

(18)
$$\sup_{\Omega} \left[|x - x_s|^{a+h} |\varphi_n(x)| \right] < \infty.$$

We define the sum of two points $U = \{\varphi_n(x)\}, V = \{\tilde{\varphi}_n(x)\}$ of the space Λ and the product of a point and a number by

(19)
$$U+V = \{\varphi_n(x) + \tilde{\varphi}_n(x)\}, \quad \lambda U = \{\lambda \varphi_n(x)\}.$$

For every point $U \in \Lambda$, we define an infinite sequence of pseudonorms

(20)
$$||U||_n = \sup_{\Omega} \left[|x - x_s|^{\alpha + h} |\varphi_n(x)| \right].$$

We define the distance $\delta(U, V)$ of points U and V of the space Λ by the formula

(21)
$$\delta(U, V) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\|U - V\|_n}{1 + \|U - V\|_n}.$$

The space Λ is linear, metric, locally convex and complete.

Let us consider a set $Z(\varrho, \varkappa)$ in the space Λ formed of all those points $\{\varphi_n(x)\}$, for which the conditions

$$(22) |x-x_s|^a |\varphi_n(x)| \leqslant \varrho, |x-x_s|^{a+h} |\varphi_n(x)-\varphi_n(y)| \leqslant \varkappa |x-y|^h$$

$$(n=1,2,\ldots)$$

are satisfied, where ϱ and \varkappa are some positive constants.

The set $Z(\varrho, \varkappa)$ is closed and convex.

Let

(23)
$$\Phi(x) = \begin{cases} |x - x_s|^{a+h} \varphi(x) & \text{for } x \in \Omega, \\ 0 & \text{for } x \in \sum_{k=0}^{p} S_k, \end{cases}$$

where $\varphi(x) \in \mathfrak{S}_a^h(\varrho, \varkappa)$. The so defined functions $\Phi(x)$ are uniformly bounded and uniformly continuous in a bounded domain $\Omega_0 + S_0$. So the set of all of them is compact by virtue of the theorem of Arzelà. Hence it follows that the subset $Z_N(\varrho, \varkappa)$ of the set $Z(\varrho, \varkappa)$ formed of those of its points $\{\varphi_n(x)\}$, for which $\varphi_n(x) \equiv 0$ if n > N, is compact as well. Because of the definition (21) of the distance and of the theorem of Fréchet [1] we state that also the set $Z(\varrho, \varkappa)$ is compact.

Referring to equations (9), consider the operation defined for points of $Z(\varrho, \varkappa)$ by the totality of equations

(24)
$$\psi_{\nu}(x) = F_{\nu} \left\{ x, \int_{\Omega} N_{\nu}(x-y) R_{\nu}[y, \varphi_{1}(y), \varphi_{2}(y), \dots] dy, \varphi_{1}(x), \varphi_{2}(x), \dots \right\}$$

$$(\nu = 1, 2, \dots).$$

We shall now show that the constants ϱ and \varkappa may be chosen so that operation (24) would transform the set $Z(\varrho, \varkappa)$ into itself.

Since, on the basis of assumption IV and conditions (22),

(25)
$$|y - y_s|^a |R_{\nu}[y, \varphi_1(y), \varphi_2(y), \dots]| \leq m_R + \varrho m_{R_{\infty}}$$

and

(26)
$$|y - y_s|^{a+h} |R_{\nu}[y, \varphi_1(y), \varphi_2(y), \dots] - R_{\nu}[\tilde{y}, \varphi_1(\tilde{y}), \varphi_2(\tilde{y}), \dots]|$$

$$\leq (k_R + \varkappa k_{R_{\infty}}) |y - \tilde{y}|^h, \quad \nu = 1, 2, \dots,$$

where y and \tilde{y} are arbitrary points situated in any of regions $\Omega_1, \Omega_2, \ldots, \Omega_q$ (both in the same), and $|y-y_s| \leq |\tilde{y}-\tilde{y}_s|$; thus, on the basis of the above quoted theorem of Pogorzelski, we have

$$(27) |x-x_s|^a \Big| \int_{\Omega} N_{\nu}(x-y) R_{\nu}[y, \varphi_1(y), \varphi_2(y), \dots] dy \Big|$$

$$\leq C_1(m_R + \varrho m_{R_{\infty}}) + C_2(k_R + \varkappa k_{R_{\infty}})$$

and

where x and \tilde{x} are arbitrary points of any of the regions $\Omega_1, \Omega_2, \ldots, \Omega_q, |x-x_s| \leq |\tilde{x}-\tilde{x}_s|$.

Next, taking under consideration assumption II, we find that

(29)
$$|x - x_s|^{\alpha} |\psi_{\nu}(x)| \leq m_F + k_F [C_1(m_R + \varrho m_{R_{\infty}}) + C_2(k_R + \varkappa k_{R_{\infty}}) + \varrho m_{\infty}]$$

and

(30)
$$|x - x_s|^{a+h} |\psi_{\nu}(x) - \psi_{\nu}(\tilde{x})|$$

$$\leq \{k_F' + k_F [C_1'(m_R + \varrho m_{R_{\infty}}) + C_2'(k_R + \varkappa k_{R_{\infty}}) + \varkappa k_{\infty}]\} |x - \tilde{x}|^h$$

$$(\nu = 1, 2, ...).$$

Operation (24) transforms thus the set $Z(\varrho, \varkappa)$ into itself if the constants ϱ and \varkappa satisfy the inequalities

$$(31) m_F + k_F (C_1 m_R + C_2 k_R) + k_F (C_1 m_{R_{\infty}} + m_{\infty}) \varrho + k_F C_2 k_{R_{\infty}} \varkappa \leqslant \varrho,$$

$$(31) k_F' + k_F (C_1' m_R + C_2' k_R) + k_F C_1' m_{R_{\infty}} \varrho + k_F (C_2' k_{R_{\infty}} + k_{\infty}) \varkappa \leqslant \varkappa.$$

Simple calculation leads to the conclusion that condition (17) guarantees the existence of a pair of positive numbers (ϱ_0, \varkappa_0) satisfying (31). Therefore, operation (24) transforms $Z(\varrho_0, \varkappa_0)$ into itself.

Next, we shall show that operation (24) is continuous. Let $\{U_j\}$ be an arbitrary sequence of points $U_j = \{\varphi_n^j(x)\}$ of the set $Z(\varrho_0, \varkappa_0)$, convergent to the point $U = \{\varphi_n(x)\}$ of this set in the sense of the metric (21). We shall show that the sequence $\{V_j\}$ of points $V_j = \{\psi_n^j(x)\}$ corresponding to the sequence $\{U_j\}$ in transformation (24) is convergent to the point $V = \{\psi_n(x)\}$ which is the image of the point U in this transformation.

Since
$$\lim_{j\to\infty} \delta(U_j, U) = 0$$
, we have
$$\lim_{j\to\infty} \|U_j - U\|_n = 0 \quad \text{for} \quad n = 1, 2, \dots$$

It suffices to show that

$$\lim_{j\to\infty} ||V_j - V||_n = 0 \quad \text{for} \quad n = 1, 2, \dots$$

Consider the product $|x-x_s|^{a+h}|\psi_n^j(x)-\psi_n(x)|$, which, by virtue of (24) and (12), has the estimate

(32)
$$|x - x_{s}|^{a+h} |\psi_{n}^{j}(x) - \psi_{n}(x)|$$

$$\leq |x - x_{s}|^{a+h} k_{F} \Big| \int_{\Omega} N_{n}(x - y) \{ R_{n}[y, \varphi_{1}^{j}(y), \varphi_{2}^{j}(y), \ldots] -$$

$$- R_{n}[y, \varphi_{1}(y), \varphi_{2}(y), \ldots] \} dy \Big| + k_{F} \sum_{i=1}^{\infty} k_{i} ||U_{j} - U||_{i}.$$

We have

(33)
$$||U_j - U||_i \leqslant 2\varrho \sup_{\Omega} |x - x_s|^h$$

for $j=1,2,\ldots$ and $i=1,2,\ldots$ Therefore, because of the convergence of the series $\sum_{i=1}^{\infty}k_i$, the series $\sum_{i=1}^{\infty}k_i\|U_j-U\|_i$ is convergent. Moreover, its sum tends to zero when $j\to\infty$. We may investigate the component appearing at the right-hand side of the estimate (32) so as in the paper [3]; it leads to the conclusion that this component also tends to zero when $j\to\infty$. Consequently,

$$\lim_{i\to\infty} \|V_i - V\|_n = 0,$$

which shows the continuity of operation (24).

Since all the assumptions of the above quoted theorem of Tichonov are satisfied, the proof is complete.

REFERENCES

- [1] M. Fréchet, Quelques propriétés des ensembles abstraits, Fundamenta Mathematicae 12 (1928), p. 298-310.
- [2] W. Pogorzelski, Sur une classe de fonctions discontinues et une intégrale singulières dans l'espace, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 7 (1960), p. 445-451.
- [3] О свойствах сингулярного интеграла в пространстве и их применение к одной системе сингулярных интегральных уравнений, Проблемы Механики Сплошной Среды, Издательство Академии Наук СССР, Москва 1961, р. 288-301.
- [4] A. N. Tichonov, Ein Fixpunktsatz, Mathematische Annalen 111 (1935), p. 767-776.
- [5] A. Zygmund, On singular integrals, Rendiconti di Matematica 16 (1957), p. 468-505.

Reçu par la Rédaction le 21. 7. 1965