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ON FREE GROUPS
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MAREK BOZEJKO (WROCLAW)

For a non-commutative free group F we consider the representation
Fox - A(w) e B(IP(F)) defined by

[4(2)f1(y) = f(#™"y2) = [o(x)A(x)f1(y),
where o and 4 are the right and the left regular representations of F, re-
spectively. We lift 4 to I'(¥F) and denote by CJ(F) the C*-algebra obtained
by completing I'(@) in the norm |f]l, = lI14(f)I.
The aim of this note is to describe the structure of 0% (F) (Section 2,

Theorem 1). As a consequence, we obtain some information concerning
B, (F).

1. Preliminaries. We recall some notion and theorems which are
basic for everything what follows.

Let G be a locally compact group and let 2 = X (@) denote the space
of all *-representations of L'(@). We fix a subset 8§ of X as in [7] and we
write

Ny = {fe L"(@): =n(f) = 0 for = e 8},
Ny = {fe C*(@): n(f) =0 for = e 8}.

Let C4(G) be the completion of the quotient algebra L'(@)/Ng with
respect to the norm

Iflls = sup{ll=(f)ll: = e 8}.
PrOPOSITION A (Eymard [7]). The canonical map f — f from L'(@)
onto L'(G)/Ng extends to a *-homomorphism
ag: C*(G) - 0%(Q)

such that kerag = Ng and Cg(Q) is isometrically isomorphic to C*(Q)/Ng.
We denote by Pgy(@) the space of positive-definite functions associated
with representations in 8, i.e., p € Pg(@), iff p(x) = (n(x)&| &) for a me S
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and a & € H(zn). Let Bg(G) denote the linear span of Pg(G). Now, Bg(G)
equipped with a norm turns out (cf. [7]) to be isometrically isomorphic
to the dual of Og(@).

For 8,, 8, < 2, 8, weakly contained in S,, we write 8, <V 8§, if
one of the following equivalent statements holds:

(a) N'S2 c N'sl.

(b) Bs, (@) = Bg,(&).

(¢) For every f e L!(@), Iflis, < fls,-

If 8, <78, and S, <V 8;, then 8, is weakly equivalent to S,.

As has been observed by Godement ([9], see also [4]),

B.(G) = {u e B(G): M(|u*) =0},

M being the unique invariant mean on B(@), is a closed ideal in B(@).
Moreover, we have the direct decomposition

B(G) = B,(@)® (AP(@)nB(&)),
where AP (@) is a space of almost periodic functions on G.

2. Structure of the 0% (F). We start with the following

LemMMA 1. Let n,, 7ty € 2(@), 7wy <V 7, and suppose that 0:1 (@) is a 8im-
ple algebra. Then =, is weakly equivalent to 7.

Proof. Since @, <% 73y N, = N, and the diagram

07,(@) <—— 0" (@)

~
~N
~N
B>

~
Sy 0L,(6)

is commutative, where g is such that o, = foa,. A simple verification
shows that f is well defined and that it is a *-epimorphism.

But since C’,"',l (@) is simple and kerf is trivial, § is a *-isomorphism.
Consequently, (7 (&) is *-isomorphic to (7 (&), so B, (§) = B, (@) and
n, is weakly equivalent to =,.

COROLLARY 1. Let F be a mon-commutative free group. Suppose that
ne X is weakly contained in the left regular representation o. Then w s
weakly equivalent to o.

Proof. It follows from Lemma 1 and a theorem of Powers [15]
(cf. [2]) that C;(F) is a simple algebra.

Now, let H be a subgroup of F and let U¥ = ind§ 1 be the induced
representation of F from the trivial representation of the subgroup H.
We call it a quasi-reqular representation.

Let € F and let C(x) denote the centralizer of #. We know that
C(x) is a cyclic subgroup of the free group F (cf., e.g., [13], p. 42).
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We write U°® = U® and we note that U°® is a trivial representation
of F. The following is an extension of a theorem of Yoshizawa [16].

PRrOPOSITION 1. Let F' be a non-commulative free group. Then the re-
presentation U® i3 irreducible and, for © # e, U® is weakly equivalent to
the left regular representation A.

Proof. The quasi-regular representation U® acts in the Hilbert space

*(F /0 () by the formula '
(U) () = flg7"2);

where f e 1*(F/C(x)) and Z = 20(x). To simplify the notation, we denote
the function §; by z.

First we prove
(1) 0 #fel(F|C(x) and (U =f)=(f=7F(e)e.

In fact, UZf = f implies U7, f = f for every integer %, and hence
(2) fW) = f(y) for every jeF,keZ.

Since the centralizer of z is an infinite cyclic subgroup, we see that

the set of the cosets {#*y: k €Z} is infinite provided ¥ e C(x). Thus,
by (2), f = 0 for § # C(x), whence f = f(e)e.

What follows now is an adaptation of the proof due to Yoshiza-
wa [16].

Let T be an intertwining operator of the representation U¥, i.e.

TU; = U;T for every ge F.

Hence, in particular, we have
UiT(e) = TUZ(e) = T'(e).
So, by (1), we obtain T'(¢) = ae. But
Tz = TUL(e) = ULT(e) = az,

whence T = al and, consequently, U® is an irreducible representation.

By Lemma 1, to show that U” is weakly equivalent to o it suffices
to prove that U~ is weakly contained in ¢. This, however, results from the
following well-known theorems:

THEOREM B (Fell). If H is a closed subgroup of G and 7, <% n,, then
ind (m;) <™ ind (s,).
THEOREM C (Mackey). Let H, « H, < G and n € X(H,). Then

indd, (7,) = ind (indz* ().
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THEOREM D (Hulanicki). A locally compact group G is amenable if
and only if the trivial representation of G i3 weakly contained in o.

Since the centralizer C(x) of # is a ¢yclic group, so amenable, we have
togzy <" Co@) = IDAG (i) .
But U* = ind{';(z) (¢¢(z))» Whence, by Theorems B and C, Proposition 1

follows.

We are now in a position to consider the conjugate representation 4
of the free group F and to prove a theorem describing the structure of
C’(F). The representation A acts in I*(F) by the following formula:

(4,f) () = fg~'zg) for fel’(F).
Let O(z) = {g~'wg: g € F}. Then

F = U O(KL'),
zeR

where 2 runs over a set R such that z,y € R implies O(2)n0(y) = 9.
THEOREM 1. Let F' be a non-commutative free group and let A be the
conjugate representation of F. Then

(a) A is unitarily equivalent to the representation @ U=,
zeR

(b) 4 is a faithful *-representation of 1'(F) (i.e., if A(f) = 0 for an
fell(F), then f = 0).

(¢) C% (F) contains the ceniral projection P on the one-dimensional
subspace #, = {f6,: peC}.

(d) C5(F) = I,®1,, where I, and I, are unique closed ideals in C5(F)
such that I,NnI, = {0}, I, is isomorphic to the complex numbers C, and
1, is isometrically isomorphic to C; (F).

Proof. (a) Since F = | O(x), we have

zeR

B(F) = @F(0().

To prove (a) it suffices to note that the representation U< is unitarily
equivalent to 4l , and this is established by the map

¥zt 0(2) - F[C(w)

defined by y.(yzy~') = yC(2).
(b) By Proposition 1 and Theorem 1 (a), the representation 4 is
weakly equivalent to i;@® o. Hence
. e<v4
and this is equivalent to
le(HI<1A(f)ll  for every fel'(F).
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The left regular representation o is faithful on I'(F') and so is 4.

By (b), the C*-algebra C%(F) can be regarded as the closure of the
algebra of operators {4(f): f € I'(F)} in the space of all bounded operators
on the Hilbert space I*(F).

(c) In fact, (c) was first noticed by Akemann and Ostrand [1] in
a similar context.

For the sake of completeness we include our proof of (c).

It depends essentially on the existence of an infinite subset E in
a non-commutative free group which has the following property :

le(H < Cliflls for fel?(F) and suppf < B.

The existence of such an infinite set in a free group has been dis-
covered by Leinert [11] and, therefore, it is called Leinert set (see [12]
and [3]).

KE ={a"b": n =1,2,...}, where-a and b are free elements in a free
group F, then F is a Leinert set.

Let P denote the projection in *(F) onto the one-dimensional sub-
space ', = {f6,: B eC}:

Pf = f(e)d, for every fel’(F).

Let B = {x,, ®,, ...} be an infinite Leinert set. We put

1 n
fn:;é:(szk.

We evaluate the operator norm of the difference 4(f,)—P.
Using Proposition 1, statement (a), and the fact that F is a Leinert
set we obtain

1A (f,) =Pl = [|A(f)lare @ P(0(2))|| = sup [ U%(,)

< lle(fI < Cliflls = On~Y2,
It is also easy to see that
PA(f) = A(f)P = P(f) for every fel'(F)

and that P belongs to the centrum of the algebra Cj(F).
(d) Making use of the formula

II—=P) A()Il = lle(F)l

which is a consequence of Proposition 1 and Theorem 1 (a), we note that
the mapping

A(f) = (P(f), (I—P)A(f))
establishes a *-isomorphism between the algebras O%(F) and C-1@ O} (F).
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The simplicity of O (F)implies that O (¥)has only two ideals I, and I,.
Since the centrum of the C*-algebra C(F) is trivial, we see that I,
is the centrum of C%(F).

COROLLARY 2. B,(F) = B,(F)®C-1.

3. Special subalgebra of the Fourier-Stieltjes algebra B(F). Now let G
be an arbitrary locally compact group. As has been shown by Godement
[9], there exists a unique invariant mean M on B(G).

In particular, if « € P(@), then

M(u) = inf{<u, f * f*: fZ0,1fll, =1}.
Let
By(@) = {u e B(@: M(ju]) = 0}.

We have a direct decomposition
B(@) = B,(G)®DB,4(d).

ProposITION E (Derighetti). If G is non-amenable, then B,(G) = B, (G).

For the sake of completeness we include a modified proof of Deri-
ghetti [5]:

Proof. Let u € P,(G). Then u = g * g* for some g € L*(Q).

Since G is not amenable, there exists an f e L'(@) such that f> 0,
Ifly =1 and Jlo(f)l =k<1. We put h, =f*f*...«f (n times). Of
course, [kl =1, lle(k,)ll < k" and, consequently,

| M (w)] < Kty hyx B> = g * g*, bk by < llo(hy,)I llgll-

Since |lg(h,)ll -0, we obtain M(u) = 0. Therefore, if u e P,(G),
then % = |u|* € P,(@), whence M (|u|*) =0 and, consequently,

M(ju?) =0 for every u € B,(G).

ProBLEM (P 1074). Does B,(G)= B.(G) hold for any locally compact
group G*?

We are going to show that this does not hold for non-commutative
free groups. _\

PROPOSITION 2. If F is the free group freely generated by two elements
a and b, then B,(F) S B,(F).

First proof (Hulanicki). Let N be the smallest normal subgroup
of the free group F containing the free generator a. Denote by x the char-
acteristic function of N. Since the index of N in F is infinite (F'/N =~ Z),
we have y € B.(F). If y € B,(F), then x|y € B,(N). But x|y =1, and N
is also a free group. Thus N is non-amenable and, by Theorem D, 1 ¢ B,(¥),
80 also x ¢ B,(F).
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Second proof. Let x be as in the first proof. We show that

% ¢ B,(F) using the following theorem about Leinert sets (see [14]):

(3)

If E is a Leinert set, then
15 B, (F) = V(E).
One can verify that E = {b*ab~*: ¥k =1,2,...} is a Leinert set

and B c N. Thus, by (3), we obtain y ¢ B, (F).
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