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0. Introduction. In this paper we study the notion of diagonal
normality. A space X is called diagonal normal (4-normal for short) if the
diagonal 4X has a closed neighborhood base in X x X. As in the case of
divisible spaces (the collection of neighborhoods of 4X forms a uniformity),
d-normality is obtained by isolating a property of uniformities and
considering it in the family of all neighborhoods of 4X. Contrary to
divisibility, which implies collectionwise normality, 4-normality has no nice
relations with the usual separation axioms: 4-normality implies regularity
but it does not imply complete regularity. It is however still possible that, for
example, some nice results may be proved about spaces which are 4-normal
and normal. For example, 4-normality features in a characterization of
divisible spaces [8]. The paper is organized as follows: Section 1 contains the
relevant definitions, Section 2 contains some general theorems on 4-
normality, among them a characterization in terms of open covers and
Section 3 contains some examples to show that in general A-normality
behaves rather badly. Finally the author would like to thank Eva Lowen-
Colebunders for bringing the subject of A-normality to his attention.

1. Definitions and preparatory remarks. Since we will be working
with product of sets we first fix some terminology on this subject. Let X be a
set. 4X denotes the diagonal of X, i.e. the subset {{x, x)| xe X} of X x X. If
Ac X xX and xe X we let A[x]={yeX| {(x,y)eA}. Note that if X is a
topological space and A4 is open then also A[x] is open. Furthermore if

A, B < X xX we put
AoB = {{x, yd)| IzeX: (2, yDe A A {(x,z)eB}.

We now turn to the topological definitions. Let X be a topological space.
We call X diagonal normal (4-normal) if AX has a closed neighborhood
base in X x X, or equivalently for all open U 2 4X there is an open V 2 4X
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such that ¥ < U, or, to make it sound it even more “normal”, any two
disjoint closed subsets of X xX one of which is the diagonal can be
separated by open sets.

In Section 2 we exhibit some properties of 4-normal spaces and in
Section 3 we give some examples. For all standard topological notions we
refer to [4], the non-standard ones will be given below.

Let X be a topological space; X is called

(i) divisible ([2]) if every open set U containing 4X can be divided by
two, i.e. there exists an open set V around 4X such that VoV c U;

(ii) monotonically normal ([6]) if one can assign to all pairs (4, U) with
A closed, U open and A<cU an open set G(A, U) such that
AcG(A,U)cG(A,U)cU and if A<cA and U cU' then
G(A,U) =G4, U);

(iii) retractable if every closed subset A of X is a retract of X, i.e. there
is a continuous map r: X — A such that r(x) = x for all xe A. See [3] for an
investigation of retractability.

The above-mentioned properties are in fact quite strong separation
properties, for instance they all imply collectionwise normality (spaces with
properties (i) or (iii) are even hereditarily CWN).

Finally P, Q and R denote the sets of irrational, rational and real
numbers respectively.

2. Some positive results. In this section we characterize A4-normality
in terms of open covers of X, next we indicate the position of 4-normality
among other separation axioms and finally we prove a theorem on normality
of A-normal spaces. The characterization of 4-normality which we are about
to give is not particularly nice, but it is sometimes easier to work with than
the original definition (see the examples).

2.1. THeoreM. Let X be a topological space. Then X is A-normal iff
every open cover ¥ of X has an open refinement ¥~ with the following
property: Vx,yeX: if VUe¥: x¢ U v y¢ U, then there are open O3 x and
0,3y such that VVev:. O,nV=0vO,nV=20.

Proof. “=". Given %, let U =) |0 x0| Oe %}. Take V 2 4X open
such that V< U, and let ¥ = {W c X| W is open, W < some Ue ¥, W
xW cV)].

“<". Given U, let ={0 < X| O open and O x0O < U)}. Take a
refinement ¥~ of 4 having the property described above, and let V = | ) |{W
xW| We7v}. '

The following theorem puts 4-normality in relation with other
separation and covering axioms.

2.2. THeoreM. (a) Divisible spaces are A-normal,;
(b) 4-normal T,-spaces are regular.
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Proof. (a) Let X be divisible. Let U 2 4X be open and take V 24X
open such that VoVoV c U. It is easy to see that ¥ = VoVoV, so we
have V c U.

(b) Let X be 4-normal and T;. Let A < X be closed and let xe X'\ A.
{x} xA is closed in X x X and disjoint from A4X. So let ¥ 24X be open
such that Vn({x} x4)=@. Then V[x] is a neighborhood of x and

Vix]nd=0. 0O

From 2.2 (a) it follows that a large class of spaces is 4-normal, for
example paracompact spaces are A-normal, because they are known to be
divisible [7]. However in Section 3 we shall give an example of a space
which is “supernormal” (meaning that it has some strong separation
properties) which is not 4-normal, and an example of a 4-normal space
which is not completely regular, so Theorem 2.2 is best possible.

The next lemma is handy in showing that some spaces are not 4-
normal, moreover it has an interesting corollary.

23. LemMMmA. Let X be a A-normal space. Let A and B be closed and
disjoint subsets of X such that A is countably compact and X is Fréchet at the
points of B. Then A and B can be separated by disjoint open sets.

Proof. A xBis closed in X x X and disjoint from 4X. So let V 24X
be open such that Vn(AxB)= 0. Let O= () V[a]. O is open and

aeAd
contains 4. We show that 0 "B = @. Suppose 3be0 n B. X is Fréchet at
b, so we can find a sequence {x; ), in O such that x; —» b. For all iew pick
a;e A such that x;e V[q;]. The set {a;};,, is infinite since BN V[a] = O for
all ac A. Let ae A be an accumulation point of |q;};o,. Then, since for all i
<a|" xl’>€ V.

{a, bYe(A xB) N {{a;, X;D}iew S(AXB)N T,

which is a contradiction. []

24. CoROLLARY. A A-normal space which is countably compact and
Fréchet (or more special: first-countable) is normal. [

This shows that 4-normality is stronger than regularity, since regular,
countably compact, first-countable, non-normal spaces exist [12]. Our last
result in this section deals with invariance of 4-normality under mappings.

2S5. THeorReM. Let f: X - Y be a perfect open map. Then Y is A-
normal if X is A-normal.

Proof. The map fxf: X xX = Y xY is also perfect and open. Let
U = 4Y be open. Take V 2 AX open such that ¥ c(fxf)" [U]. Since fxf
is open fxf[V] is a neighborhood of 4Y and since fxf is closed we have

IxfV1=[fxf[Vl1cU. O
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In Section 3 we shall give an example of a closed map each fiber of
which has at most two points, which does not preserve 4-normality.

3. Examples. In this section we give some examples to show that
Theorem 2.2 is sharp and that A-normality behaves badly under topological
operations.

3.1. Example. A monotonically normal, hereditarily countably
paracompact space which is not 4-normal.

This is the “supernormal” space mentioned in Section 2. The above-
mentioned separation properties are very strong, spaces with these properties
have very nice properties with respect to extension of continuous functions
[3]. Let X be the space obtained from the product w, x(w, + 1) by making
each point (a, ) with f < w, isolated. H. E. Cohen [1] showed that this
space which he attributed to R. H. Bing is collectionwise normal but not
divisible. E. K. van Douwen [3] showed that it has the other above-men-
tioned properties.

We show that X is not 4-normal.

Let # = {[0, a] x(a, ®]}se, VY (@1 X@,]. Let ¥ be an open refinement
of #. For every aew, pick y, <a and B,ew; such that

{a, w,}e(y,, o] x(f,, w,] Ssome Ve ¥ .

By the Pressing Down Lemma let S cw and yew,; be such that S is
unbounded and for all aeS 7, =7. The set C= ¢ a <& = B, <&} is
c.ub. in . Let aeC be a limit point —in w; — of S. Let x = (y+1, a) and
y = <1, w,). Then xew,; xw, but y¢w, xw, and if xe[0, ] x(#, w,] then
B <a so y¢[0, Bl x(B, w;]. Let O, = {x} and let O, = (9, a] x(¢, w,] be a
neighborhood of y. Take neSn(d, 2). Then n <« so B, <a and hence
xe(y, n] x(B,, ,], and {n, w,>€ 0, so O,N(y, n] x(B,. ] # @. So for all
Ue#: x¢U v y¢U, but for every O, and every O,

AVe?y: 0,nV#0OA0,nV 0. 0O
3.2. Example. A 4-normal space which is not completely regular.
Let X be the closed upper half-plane plus a point co. Points above the x-axis

will be isolated. ,
The n-th neighborhood of <x, 0} will be

Un(x) = 1<%, Il 0y <1/nju i{x+1+y,y) 0 <y <l/nj.
The n-th neighborhood of oo will be
Yp(0) =40} U {{x, YD x >n}.

A. Mysior [10] constructed this space as an example of a regular not
completely regular space (a Bairecategory type argument will show that the
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point oo and the closed set {{(x,0)] x <0} cannot be separated by a
continuous function). ‘

We shall show that this space is 4-normal.

Let % = {{<x, y>}| y >0}u{U, (@) aecR} U U,()} be a basic open
cover of X. We shall show that ¥ =(%\{U,(00)})u{U,,s(x)} is a
refinement of # as required by Theorem 2.2.

Let x, ye X satisfy VUe%: x¢U v y¢U.

(i) x is isolated. Let O, = {x}. x can be in at most four elements of
¥": {x}, two sets of the form U, (a) and U,.s(x). y is not ifi the first three

sets which are clopen so we can choose O, such that O, meets none of them.

If xeU,;5(0) then y¢U,(0) 2U,,s(0) so in that case we can also
require that O,NnU,,s(0)= @. Consequently VVey: O,nV
=0vOo,nV=20.

(i) x=<a,0> and y =oo0. In this case x¢U,(0) so a<n and if
Up, )" Uy(a) # O then b<a+2<n+3 and so U, (b) =(-oc,n+9)
x [0, o). And hence U,, (b) " U,;s(0) = @. Consequently

VVery: ValU,(@#0 = VnU,,s(x)=0.

(iii) x = <a, 0> and y = (b, 0> with a <b. We show that there is an
meN such that VceR: Up,(@nU,(c)# O = U,(b)nU,(c)= 0. This
immediately shows that for all Ue #\ {U,(x0)}:

Un@nU=0 v U,bnU= 0.
Furthermore if U,(b)nU,,s(0)# @ then beU,(x) so a¢U,(oc) and
hence U,(@)nU,;s(0) = O. So again VVe7¥":

Up@nV=0v U,b)nV = 0.
Also note that the reasoning in (i) and (iii) shows that Y = X\ {o0)} is 4-
normal, in fact it is shown that 4Y has a clopen neighborhood base in Y x Y.
We shall use Y again in Example 3.3. We now turn to the finding of m. First
of all note that if U;(c)nU,(a) # @ then ce(a—1—1/n,a—1)u (a' L

(a+1, a+1+1/n) and the same is true for b of course. So we have to find
me N such that

(a=1=1/m,a—1)u {a} u(a+1,a+1+1/m)n
A(b=1=1/m, b—1)U b, U(b+1,b+1+1/m)= 0.
But this is easy, just choose m such that
1/m<b—a ifa<bs_a+1,

I/m<b—(a+1) ifa+l<b<a+2,
m <b—(a+2) if a+2<b. [
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33. Example. A perfect map which does not preserve 4-normality.

We shall construct an upper semicontinuous decomposition of the space
Y from Example 3.2 into one- and two-point subsets such that the quotient
space Z is not 4-normal. First of all note that the x-axis A is a closed and
discrete subset of Y, so that any decomposition of A induces a usc.
decomposition of Y.

We define a decomposition of R, and hence of A4, as follows.

Let {K,| xe2”} be an enumeration of the collection of all countable
unions of closed nowhere dense subsets of R? which contain 4R. Inductively
choose for all ae2” a point

{Xq» Vo€ P?\(K, UﬁU ({xg, yg} x RU R x {x4, y5})).

To see that this is possible consider for some ae2”
A, = {xeR| K,[x] is of second category in R}.

We claim that A4, is of first category in R.
Suppose not. Let K, = |J K; with each K; closed ar_ld nowhere dense

iew

and let {B,},., be a base for R.
Let A, = {xeR| B, =K;[x]}, i, new. Then 4, = 4;, by definition

of A,. So by assumption 4;,° # @ for some i and n, hence B, < 4, for
some m. But then B, x B, < K; contradicting the fact that K; is nowhere
dense.

So since A4, is of first category, |P\A,| =2 hence we can pick

X, € P\(A; U U 1%g, yg})
Bex
and since K, [x,] is of first category we can pick

yaep\(Ka [xa] UpU {xﬂ’ yﬂ} v {xa})-
=

Clearly {x,, y,> is as required. The set E = {{x,, y,)| ®€2”} is of second
category in R%. Let Z be the quotient space obtained from Y by identifying
the points {x,, 0> and {y,, 0) for all xe2®. As noted above the projection
n: Y — Z is closed and since the fibers have at most two points n is perfect.
We now show that Z is not 4-normal. To this end we put V,(x) = n[U,(x)]
if x¢ U (% o) and V(z) = 2 [U,(x) U U,(y)] where 2z, =n(<{x,, 0))
ae2®
= (Y, 0)) for a€2®. Then |V,(z)},~ is a local base at z for all zen[4].
Let # = {n[Y\A]} U {V1(2)}.ca- % is an open cover of Z. Let ¥ be an open
refinement of #. For all zen[A] pick n.e N such that V,_(z) < some Ve 7"
Let

| — —_ p!
En - |<x’ .V>EE' nn((x.O)l - nt((y.O)) =ny, HGN.
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For some ne N we have that E3 # 0, since E is of second category and E
[* ]

= |J E,. Take {p, 4> Q? such that (p—1, g—1)eE] and ¢ > 0 such that
n=1

(p—1—¢, p—1+e)x(q—1—¢,q—1+¢) <E,. Let meN be arbitrary and
choose <x,, y,>€E, such that p—1—-6 <x, <p—landg—-1-d <y, <p-1
where 6 = min {¢, 1/n, 1/m}. It is easy to see that U,(x,) U, (p) # @ and
U,(yl) nUn(q) # @ and V,(z,) " V,.(q) # O, hence we can find a Ve ¥~ such
that V,(p)nV # O # V,(q@9 V. Since m was arbitrary and since clearly
VUe% p¢U v q¢U we see that ¥~ does not have the property described
in Theorem 2.1. We conclude that Z is not 4-normal. [

34. Example. A 4-normal space X and a compact space Y such
that X xY is not 4-normal

Let X =w, and Y =w,;+1. X is a linearly ordered topological space
(LOTS), hence divisible [9], hence A-normal. Y is a compact LOTS and
hence A4-normal for two reasons. Let A= {<{a,w,)| aew,} and B
= {(a, )] a€w,}. A and B are closed and disjoint subsets of X x ¥, which,
as is well known, cannot be separated by open sets. However A and B do
satisfy the requirements of Lemma 2.3, so X xY cannot be 4-normal. [0

Example 3.4 shows that the perfect preimage of a 4-normal space need
not be 4-normal. We can do a little better, in fact we can give an example of
an at most two-to-one closed irreducible map of a non 4-normal space onto
a A-normal space.

35. Example. Consider the subspace C = |<{a, B) B=a} of w,
x(w;+1). In 34 we actually showed that C is not 4-normal. We now
employ a trick used by J. Vermeer [13] to give an easy example of a normal
space with a nonnormal absolute.

For all limit ordinals a in w, we identify (a, a) and <(a, w, ). Call the
quotient space Z. As in [13] the projection map n: C— Z is closed and
irreducible, it clearly has fibers with at most two points only. Let # be an
open cover of Z. For all limits a in m; pick y, <a and f,ew such that

(Vas @] X((Ya> @ U (Bs, @,]) €7~ [U]  for some Ue #.

Take an unbounded set S in w, and an ordinal y such that for all aeS v,
=19. Let A ={<a, B)l a <y} and B = {(a, B « > y}. A and B are disjoint,
clopen and they cover C. So the same holds for #[4] and = [B] with respect
to Z. n[A] is compact and hence 4-normal so let ¥, be an open refinement
of {Unn[A]| Ue 4} as in Theorem 2.1 and let ¥, = {Un=n[B]| Ue ¥].
Y =¥ ,u¥, is a refinement of . A moment’s reflection will show that if
x, yeZ satisfy VUe#: x¢U v y¢ U then x,yeA or (xeA and yeB). In
the first case take O,3x and 0,3y such that VVe¥y: O,nV = 0 or
0,nV =0 and O,, O, A, in the second case let O, =4 and O, = B. In
both cases VVe¥: O, nV=0vO,nV=0.0
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The above examples suggest some questions. First of all, in Example 3.3,
the domain of the map is not very nice, so the question arises whether the
perfect image of a nice (i.e. normal, countably paracompact, etc.) 4-normal
space is again 4-normal (P 1318).

Furthermore, Example 3.4 suggests the question of whether the product
of a A-normal space with for example the unit interval or a convergent
sequence is 4-normal (P 1319). Finally, since 4-normality is independent of
normality -etc., it would be interesting .to know what extra properties, for
example a normal space has, if it is also 4-normal. In this context let us
mention that a 4-normal Dowker space exists: in [5] the author showed that
M. E. Rudin’s Dowker Space [11] is, in fact, divisible. '
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