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1. Consider the class P of all probability measures defined on Borel
subsets of the positive half-line. By ¥, (u > 0) we shall denote the prob-
ability measure concentrated at the point w. For any positive number ¢
we define a transformation 7', of P onto itself by means of the formula
(TeP)(sf) = P(c™'of), where PP, o is a Borel set and ¢ ' = {¢c"'a:
wes/}. Further, we define the transformation T, by assuming 7T,P = E,
for all P<?P. We say that a sequence P,, P,, ... of probability measures
is weakly convergent to a probability measure P, in symbols P, - P, if
for every bounded continuous function ¢ the equation

hmf (@) Py(do) = [ g()P (dx)

holds.

A commutative and associative P-valued binary operation o defined
on P is called a generalized convolution if it satisfies the follomng con-
ditions:

(i) the measure ¥, is a unit element, i.e. H,oP = P for all PeP;

(ii) (aP+bQ)oR = a(PoR)+b(QoR), whenever P,Q,ReP and
a=0,b>0, a4+b =1;

(iii) (ToP)o(T.Q) = T.(PoQ) for any P,QeP and ¢ > 0;

(iv) if P, — P, then P,0Q — Po@Q for all Q<JP;

(v) there exists a sequence ¢y, ¢,, ... of positive numbers such that
the sequence _Tan;’” weakly converges to a measure different from ),
(the law of large numbers for measures concentrated at a single point).

The power E;" is taken in the sense of the operation o, i.e. ES! = Ky
E = B"0E, (n=2,3,...). For a general theory of generalized
convolutions as well as examples of generalized convolutions we refer

to the paper [2]. We shall quote only two examples of generalized con-
volutions. In both examples generaljzed convolutions P o€ will be defined

by means of the functional f @ () (Po@)(dr) on all bounded continuous
functions ¢.
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a-convolution (0 < a < oo):

(1.1) [e@Po@)dr) = [ [ ¢(a"+y)")P(dx)Q(dy).
0 0 0

For a =1 we obtain the ordinary convolution.
(ay 1)-convolution (0 < a << oo):

(1.2) f #(w) (PoQ) (dw) — f f [ (@ + 90+ g (1a" — 9] P(d) @ dy)

The present paper is devoted to a simple characterization of a-con-
volutions and (a, 1)-convolutions.

The class P with a generalized convolution o will be called a gener-
alized convolution algebra and denoted by (P, o). A continuous mapping h
of P into the real field is called a homomorphism of the algebra (P, o)
if h(aP+0bQ) = ah(P)+bh(Q), whenever a >0, b>0, a+b =1, and
h(PoQ) = h(P)h(Q) for all P, QP . Of course, each generalized convolu-
tion algebra admits two trivial homomorphisms & (P) = 0 and h(P) = 1.
Algebras admitting a non-trivial homomorphism will be called regular.
In this case the generalized convolution will be also called regular. Both
a-convolution and (a,1)-convolution are regular (see [2], Section 2).

We say that an algebra (P, o) admits a characteristic function if
there exists a one-to-one correspondence P « @p between probability
measures P from P and real-valued functions @p defined on the positive
half-line such that @,p g = aPp+ 0Py (6 =0, b =0, a+b =1), Ppeg
= OpPq, Pr,p(l) = Dp(at) (a >0, t>0) and the uniform convergence
in every finite interval of @p, i3 equivalent to the weak convergence
of P,. The function @p will be called the characteristic function of the
probability measure P in the generalized convolution algebra (P, o)
The characteristic function in generalized convolution algebras plays
the same fundamental role as in ordinary convolution algebra, i.e. in
classical problems concerning the addition of independent random vari-
ables.

It was proved in [2] (Theorem 6) that a generalized convolution
algebra admits a characteristic function if and only if it is regular. More-
over, each characteristic function @p is an integral transform,

(1.3) Pp(t) = f Q (tw) P (d)
0
where the kernel 2 satisfies the condition

(1.4) lim 2= 2

_—— = t>0
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for some positive number x» called the characteristic exponent of the gener-
alized convolution algebra. For instance, Q(t) = exp(—1t") and Q(i)
= cos (") are kernels of characteristic functions in a-convolution and
(a, 1)-convolution algebras respectively.

2. Let s(P) denote the support of the measure P and |</| the cardinal
number of the set 7. Since s(H,oE,) = {(x*+y*)"/*} for a-convolutions
and s(B,oE,) = {(«"+y")"*, |z*—y"|"} for (a,1)-convolutions, we infer
that a-convolutions and (a, 1)-convolutions fulfill the following condi-
tions:

(*) |s(BzoB,)| <2 for all ,y >0,
(*%*) the set |J s(H,okE,) is bounded.
' 0<,y<1

These conditions characterize a-convolutions and (a, 1)-convolutions
among regular generalized convolutions. Namely, we shall prove the
following theorem:

THEOREM 1. A regular generalized convolution satisfies conditions
(*) and (**) if and only if it is either an a-convolution or an (a, 1)-convo-
lution.

Theorem 1 is a direct consequence of the following two theorems:

THEOREM 2. If a reqular generalized convolution satisfies the condition
|s(E,0Hl,)| =1 for some positive numbers w and v, then il s an a-con-
volution.

THEOREM 3. If a regular generalized convolution satisfies condition
(**) and the equation |s(H,oH,)| =2 for all positive numbers x and v,
then it is an (a, 1)-convolution.

3. In this Section we shall prove Theorem 2. First of all we shall
prove two Lemmas.

LevMMA 3.1. If o is a reqular generalized convolution and Po@Q = E,,
then P =@ = KH,.

Proof. Let @p be a characteristic function in the generalized con-
volution algebra in question. Suppose that Po@) = E,. Then we have
the formula @p®Py; = 1. Since |Pp(t)| <1 and [DPy(t)| <1 for all {0
(see [2], Theorems 1 and 6), we have the equation [@Pp(f)| = |DPy(f)] =1
for all ¢ > 0. Hence, taking into account the continuity of characteristic
functions and the formula @p(0) = Py(0) =1, we get the equation
@p = @y = 1. Thus P = ¢ = E, which completes the proof.

LEMMA 3.2. If o is a regular generalized convolution and @ a proba-
bility measure with positive characteristic function, then the equation PoQ
= K, implies the equation P = E,, where b is a mon-negative number.
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Proof. Suppose that the measure P is not concentrated at a single
point. Then there are two different measures P, and P, in P such that
P = }(P,+P,). Hence we get the formula }P,0Q+ 4 P,0Q = E,. Thus
both measures P,o0Q and P,oQ are concentrated at the point a and,
consequently, P,o @ = P,0(Q = F,. The last equation implies the equation
@p, Py = Dp, P, for characteristic functions. Since, by the assumption,
the function @, is positive, we obtain the formula ®p, = Pp, which
implies P; = P,. But this contradicts the inequality P, # P,. The Lemma
is thus proved.

Proof of the Theorem 2. The assumption |s(E,o0H,)| =1 can
be written in the form FE,oE, = E,, where, by Lemma 3.1, w > 0.
Moreover, by (iii), we may assume that w = 1, i.e. B,0E, = E,. Since,
by (1.3), @g () = 2(xt), we get

(3.1) Q(t) = Q(ut) Qwvt) (t=0).
Hence, by (1.4), we get the formula

@A 1— Q(tx) @ 1— Q(utx) Q(vix) B . .
e o T T iew N

Thus <1 and v< 1.

Now we shall prove that the function 2 is positive. Since 2(0) =1,
it suffices to prove that Q is different from 0 everywhere. Suppose the
contrary. Let t, be the smallest positive number satisfying the equation
Q(ty) = 0. Taking into account (3.1), we infer that Q(ut,) = 0 or Q(vt,)
= 0 which contradicts the inequalities # << 1 and » < 1. Thus

(3.2) Q) >0 (1= 0).

Hence we get the inequality @p,(t) = 2(v?t) > 0. Further, from
the formula

B, = B,0B, = B,0T,E, = B,o(T,E,0T,E,) = (Fyo0By)o By

and Lemma 3.2 it follows that K,oF,, = E,, where, by Lemma 3.1,
2 18 a positive number. Consequently,

(3.3) B0 Ey1 = Tiupy-1(H,0 By) = By,
where p = z(uv)~'. Taking into account the formula

Ey1=T,1E, =T,1(H,0HE,) = E,oH,,

where a = uv™', we get from (3.3) the equation B, = E{?cH,. Since,

by (3.2), @g, (1) = Q(at) >0 (t > 0), the last equation and Lemma 3.2
imply the formula E* = E,, where, by Lemma 3.1, ¢ is a positive number.
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Now we shall prove by induction the formula
(3.4) E" = B,
where a, is a positive number. Suppose that ¥ > 2 and B = E,, , where
a, > 0. Setting @ = E*Y we have

Ei(k—l—l)OQ — E;)2k = E;i = TakEi}z = Taqu = Eq

ak-

Moreover, by (3.2), Po(t) = 2()*' >0 (> 0). Hence, by Lemmas
3.1 and 3.2, we get the formula E;**) = B, .,» Where a;; is a positive
number. Formula (3.4) is thus proved.

Setting ¢, = a,' we get, in view of (3.4), the formula B, = T, E,
=T, E" (n=1,2,...). Consequently, by Theorem 15 in [2], B, is
a stable measure. Since the measure K, is purely atomic, the generalized
convolution o is, by Theorem 17 in [2], an a-convolution. Theorem 2
is thus proved.

4. Before proving Theorem 3 we shall prove some lemmas. From
now on we will make the assumption that the generalized convolution o is
regular, satisfies condition (**) and the equation

(4.1) |$(Bz0By)| =2 (#,9>0).

For such generalized convolutions we have the formula

(4.2)  B,0By = a(®,y) By +(1—a(@,9) Byeyy (2,9 >0),

(4.3) 0<a(z,y)<1
and
(4.4) fle,y) >g(x,y).

Further, by condition (iv), the functions a(z, y), f(x, ¥) and g(x, ¥)
are continuous with respect to each variable 2,y > 0. Since the gener-
alized convolution is commutative, all these functions are symmetrical.
Moreover, by condition (iii), we have

(4.5) a(zx,2y) = a(®,y),
(4.6) flex, 2y) = of (@, )
and

(4.7) g(zw, 2y) = 29(®, Y)

for all positive numbers #,y and 2. Finally, by (*x), for all z > 0, the
inequality

(4.8) lim f(z, ) < oo

holds. o0
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From (ii), (4.2) and (4.3) it follows that
(4.9) 8((Emo Ey)OEz)
| = {f(f(w) Y), z); f(g(w7 Y), 2)7 g(f(m, Y), z); g(g(my Y), z)}

for all positive numbers «, y and 2. Hence and from (4.4) we obtain the
formula sups((B,oH,)oE,) = max(f(f(w, v),2), flg=,y), z)) This for-

mula and the commutative and associative laws for generalized con-
volutions yields the functional equation

(4.10)  max(f(f(x,y),2), fg(z,y), 2))

= max(f(f(y,z), w)?f(g(y’ 2’), 9&‘))

LeMMA 4.1. The functions a(x,y), f(z,y) and 9(x,y) satisfy for
@,y >0 the equation

a(@, y)f(@, y)"+1—a(z,y)g(=, y)* ="+ y*,

where » is the characteristic exponent of the generalized convolution algebra.

Proof. By the definition of the characteristic function and its integ-
ral representation (1.3) we have

Pp,om, (1) = D, (1) D, (1) = 2(xt) Q(yt).
On the other hand, by (4.2),
Prom, (1) = a(@, y) Q(f(z, y)t)+(L—a(z, y) (g (=, y)1).
The first equation and (1.4) imply

1— gDE oK (t)
Hm——F Y g% L,
fo 1—0() ¥
Further, the second equation and (1.4) yield the formula

T 1""¢Ew0Ey(t) o . 1 .
e 1o Y@ uf@, )+ (l—al@, )g(, y)

whence the assertion of the Lemma follows.

From Lemma 4.1 and formulas (4.3) and (4.4) we get the following
corollary:

(4.11) fl@,y) > @ +y)"™ (2,9 >0).
LEMMA 4.2. For all z > 0 the formula

Limf(x, y) = =
holds. ¥



A OHARACTERIZATION OF A CLASS OF CONVOLUTIONS 245

Proof. Setting m = limf(1,y), we have, by (4.8) and (4.11), the

y—0

inequality 1 < m << co. Moreover, by (4.6),
(4.12) lim f(z,y) = mo (x> 0).
Yy—0

Consequently, we can choose a sequence {z;} of positive numbers
tending to 0 such that

(4.13) lim f(m, 2) = m®.

k—oo

Let {y,} be a sequence of positive numbers tending to 0 such that

(4.14) llmf( y Yn) =

We can also assume that both limits

(4.15) Lm f(yn, 26) = e (K =1,2,...),
N—00

(4.16) Limg(yn,2x) = (K =1,2,...)
n—»00

exist. By (4.4) and (4.12) we have the inequality 0 < v << up < m2;
(k =1,2,...). Consequently, both sequences {uz} and {v;} tend to 0.
Hence and from (4.12) it follows that

(4.17) Ilcﬁl_ m f(f (Yn, 22), 1) < m
and
(4.18) lim 1m f(g (Y, 2c), 1) < m.

k—00 N—00

Further, by (4.10), we have the inequality

FIFL, 9a), ) < max(£(F(a, 26), 1), Fl9Wns @), 1)) (0, B =1,2,..),

Hence and from (4.13), (4.14), (4.17) and (4.18) we obtain the
inequality
m?* = lim ]imf(f(la Yn) zk) < m
k—o00 N—c0
which together with the inequality m > 1 yields m = 1. Thus, by (4. 12),
lim f(x,y) =« for all x> 0. The inequality lim f(»,y) >« is a direct

y—0 U0
consequence of inequality (4.11), which completes the proof.

LEMMA 4.3. There exists a positive number a such that f(x,y)
= (2*+y*)". Moreover, the number a satisfies the inequality a <<x where x
is the characteristic exponent of the generalized .convolution algebra.
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Proof. First we shall prove the inequality
(4.19) fl@,y:) >f(w,y,) for x>0 and y, >y, >0.

Suppose the contrary. Then there are positive numbers w, > u,
for which the inequality f(z, u,) < f(z, u,) holds. By (4.11), for all 4 >0
we have f(x,y) > 2. Further, the function f is continuous with respect
to each variable and, by Lemma 4.2, lim f(x,y)=. Consequently,

y—0

we can choose two numbers v, and v, satisfying the inequality v, > v, > 0
for which

(4.20) f(ﬂ-"', 1) =f(a"7 ¥y) = max f(a” ).

0<yY<v;

Taking into account the symmetry of the function f we have, in
view of (4.11) and Lemma 4.2, the relations

lim f(u, v,) =v,, Lm f(u,v,) =
u—0 U—>00

Hence, by the continuity of f with respect to the first variable, we
get the existence of a positive number 2z satisfying the equation

(4.21) fz, v5) = vy,

By (4.4) the number v, satisfies the inequality v, > g(z, v,). Thus,
by (4.20), f(z,v,) > f(», g(2, v,)). Moreover, according to (4.21), f(, v,)
f(w, f(z, vz)) and, consequently,

f(@, v)) = max(f(z, f(z, v.)), flw, g(2, v2))).

Hence, taking into account the symmetry of the functlon f and
equation (4.10), we get the equation

f(@, v1) = max(f(f(, vo), 2), flg(@,v,), 2)).
Thus, by (4.11) and (4.20), we have the inequality

[z, v,) >f(f(m7 Vs), z) :f(f(w; Ul)rz) >(f(m, vl)n+zx)1[n > f(x, vy)

which gives the contradiction. Inequality (4.19) is thus proved.
From (4.4), (4.10) and (4.19) it follows that the function f satisfies
the equation

(4.22) f(f(w,y),z) :f(f(yyz)’m) (9,2 >0).

Moreover, by the symmetry of f and formula (4.6), we have the
equations

(4.23) f(may):f(yrm)’ f(zm,zy):zf(a:,y) (®,9,2>0).
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Further, by Lemma 4.2, the function f satisfies the boundary con-
dition
(4.24) Limf(x,y) = .

Y—0

T. Bohnenblust proved in [1] (p. 630-632) that each function f sa-
tisfying (4.19), (4.22), (4.23) and (4.24) is of the form f(z, y) = (2" +y)'",
where « is a positive number. Moreover, from (4.11) the inequality
a < » follows. The Lemma is thus proved.

LEMMA 4.4 The function a(z,y) is constant for x,y > 0.

Proof. From formulae (4.4), (4.9) and Lemma 4.3 it follows that
sups((B,o Ey) o B,) = {f(f(w, ¥), 2)} for all #,y,2>0. Consequently, by
(4.2), the measure (E,oH,)oH, can be written in the form

(BzoBy)o B, = a(x, y)a(f(m_, Y), Z)Ef(f(m,y),z)‘*’(l_“(w: y)“(f(“") Y), z))R;

“where R is a probability measure satisfying the condition sup s(FR)
< f(f(z,¥),2). Hence, by the commutative and associative laws for
generalized convolutions, we get the equation

(4.25) a’(m7"./)a'(f(m7y)7z) :a(y,z)a(f(?/:z)7m) (w,9,2>0).

Put F(x) = a(«'*,1), where the constant a is determined by
Lemma 4.3. By (4.5) to prove the Lemma it suffices to prove that the
function F(«x) is constant for « > 0.

The function F(x) is continuous and, by (4.3), positive for z > 0.
Moreover, by the symmetry of the function a(x,y) and (4.5), we have
the equation

(4.26) Fz) =F(x") (x>0).
Setting # = u'?, y =1 and # = (1+%)"* (u >0) into (4.25) and
taking into account (4.5) and Lemma 4.3, we get the equation

F(u) P((1+u)"?) = P((L+u)) Fu™" (14 (1+u)").

Since the function F is positive everywhere, the last equation im-
plies the equation

(4.27) F(u) = F(G(w) (u>0),
where G(u) = w™'(L+ (14 w)'?). Put H(w) = G(G(uw")'. From (4.26)
and (4.27) we obtain the equation
(4.28) F(z) = F(H(z)) (x>0).

Let v be an arbitrary number satisfying the inequality v > (V5—1) 2.
Put 2, = v and ®,,, = H(x,) (n =1,2,...). Since the function H is
monotone increasing and H ((1/5—1)/2) — (¥5—1)/2, we have the inequal-
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ity z, > (1/5—1)/2 (n =1,2,...). Moreover, H(z) < forz > (V5—1) )/2.
Hence we get the inequality @, ,, <, (n = 1,2, ...). Thus the sequence
{zn} 18 convergent to a limit ¢ > (l/g—l)/Z. Of course, this limit satis-
fies the equation ¢ = H (q). Since (l/gul)/2 is the only positive solution
of the last equation, we have lima, = 1/5—1) /2. Hence and from (4.28),

nN—>00

by virtue of the continuity of the function 7, we get F (v = F(( V5—1) )/2)

for all numbers v satisfying the condition » > (V5 — 1) /2 Now equation
(4.26) implies that F is a constant function. The Lemma is thus proved.

Proof of the Theorem 3. By Lemma 4.4 there exists a constant ¢
such that a(z,y) = ¢ for all #,y > 0. Moreover, by (4.3), 0<e< 1.
Further, by Lemmas 4.1 and 4.3,

(4.29) g(@, ) = (L—e) '[&"+y*—c(a"+ y*) ],

where » is the characteristic exponent of the generalized convolution
algebra in question and 0 < a < x. From (4.4), (4.9) and Lemma 4.3
we get the equation

(4.30) max(f(g(z, ), 2), g(f(z,9), )
= sup(s((H,0 B,) 0 B\ |f(f(a, 9), 2)))
— sup(s((By0 Ba)o B\ {f(f(y, 2), o))

= max(f(g(y, 2), {L'), g(f(y? ?), GU)) .

Further, by (4.29) and Lemma 4.3, we have the inequalities f (g(z,y),2)
> g(f(z,9),2) and f(g(y, 2), 2) > g(f(y, 2) :v) for sufﬁciently small posi-
tive numbers y. Thus, by (4.30), f(g (w,7 ) =flg(y,2), ) for suffi-
ciently small y. Consequently, setting

¢ ==xla, U(l) = (L—o)f(g(1,1"), 2%,

(t) == llgf( tlfaa 21/a): 1)01
we have

(4.31) Uit) =V ((0<i<it,,

where ¢, is a sufficiently small positive number. It is clear that o>1
and the functions U(f) and V(t) are twice differentiable for ¢ > 0. If
o # 2, then |
. @2V | a:U
lim

= 9l-e
o dtt | di
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which together with the inequality ¢ > 1 contradicts (4.31). Thus o = 2
and, consequently, by (4.31),
arvu azv

= lim - — 2_1 j - ' _ —3/2.
im = 21— 20)(1—0

(1—2¢)(1—¢) *? = lim

>0 dtz

1/a

Hence ¢ = 1/2. Now formula (4.29) yields ¢g(x, y) = |2*—y°|""*. Con-

sequently, by (4.2), .
ExO Eu = %E(xa_l_ya)l/a—[— %E]xa_yall/a (.’,U, Yy > O) .

Thus formula (1.2) holds if P = E, and ¢ = K, (z,y > 0). By prop-
erty (ii) of generalized convolutions it holds also for convex combina-
tions of the measures ¥, (v > 0). Finally, by (iv), it holds for all meas-
ures P and @ from P because convex combinations of the measures F,
(u > 0) form a dense subset of P in the sense of the weak convergence.
Thus the generalized convolution in question is an (e, 1)-convolution
which completes the proof.

REFERENCES
[1] F. Bohnenblust, An axiomatic characterizationwf Ly-spaces, Duke Mathe-
matical Journal 6 (1940), p. 627-640.
[2] K. Urbanik, Generalized convolutions, Studia Mathematica 23 (1964),
p. 217-245.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES
INSTITUTE OF MATHEMATICS OF THE WROCLAW UNIVERSITY

Regu par la Rédaction le 20. 10. 1966



