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0. Introduction. A generalizafion of Stone’s famous representation
theorem was recently published by Leader and Finkelstein working with
abstract semilattices [5]. Their main result was the characterization of
a certain type of semilattice as a basis for a locally compact Hausdorff
space in which each member of the basis is the interior of a compact
set. The underlying set on which the topology is defined is the collection
of “ends” which may be thought of as generalized ultrafilters.

In this paper, we use these ends to obtain a Dedekind completion
of an ordinary lattice. This is accomplished by using the lattice to generate
a semilattice of cells similar to those characterized by Leader and Finkel-
stein. The collection of ends associated with the semilattice can then be
given a lattice structure in addition to the topological structure defined
by Leader and Finkelstein. The first example shows this procedure to
be a generalization of the familiar completion by Dedekind cuts.

In the first section we construct the lattice structure for the collection
of ends in order to obtain a Dedekind completion (Theorems 1.1 and 1.2).
In the second section we consider these sets as topological spaces noting
the relationship between some topological and order properties.

1. Regular lattices.

Definition 1.1. A regular lattice (L, v, A, <) consists of a lattice
(L, v, A) together with a binary relation <« defined on L satisfying:

Al. a < b implies a < b.

A2. a<b<cor a<<b<c implies a <c.

A3. a<b and c<€d imply ave< bvd and anc < bAad.

A4. If a < ¢, then there exists an element b such that e < b <ec.

A5. Given b in L, there exist a and ¢ in L such that a < b < c.

A6. If r < a implies x < b, then a < b.

A7. If a < x implies b < x, then b < a.

We shall refer to (L, v, A, <) as an R-lattice. Let a and a’ be ele-
ments of L with a < a’. The set {#: a < < a’} will be denoted by (a, a’)
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and referred to as a cell from L. The collection of all cells from L will
be denoted by 8.
The proofs of the following propositions are left to the reader.

PrOPOSITION 1.1. If (a, a’) and (b, b') are non-disjoint cells, then
(a,a’)n(b,b') = (avb, a’ Ab').

PROPOSITION 1.2. Two cells (a, a’) and (b, b') are non-disjoint if and
only if a< b and b<a'. .

PROPOSITION 1.3. (a, a’) = (b, b) if and only if b< a and a’ <b'.

Example 1.1. Let (P, v, A) be any lattice and use the partial
ordering < as the relation <.

Example1.2. Let (R, v, A)be the lattice of k-tuples of real numbers,
where avb is the element whose i-th coordinate is the sup of the i-th
coordinates of @ and b, and aAb is defined with the obvious change. Let
a < o’ mean that the i-th coordinate of a is strictly less than the i-th
coordinate of a’ for each 4. The cell (a, a’) would then be the interior of
an ordinary k-cell.

For subsets 4 and B of L, let

AVvB = {avb: ac A and b e B}

and let A < B mean that a < b for each a in A and b in B. The obvious
change is made for AAB. Let A* and A, denote the set of upper and
lower bounds of A, respectively.

Definition 1.2 (Leader and Finkelstein [5]). Let A be a subset
of 8. We say that a cell (a, a’) clings to A if (a, a’)n(z, z') # O for each
(¢, ") In A.

Let € be a binary relation defined on S as follows:

(a,a’)E(b,b) ifb<aand a'<b.

Thus, in Example 1.2, (a,a’) € (b, b’) means that (a, a’) < (b, b’)
under the usual topology on RF.

Definition 1.3 (Leader and Finkelstein [5]). For non-empty sub-
sets A and A’ of L with A < A’, let A x A’ denote {(a,a’): a € A and
a’ € A'}. The collection of cells A x A’ is called an end from S provided
that

El. If (a,a’) and (b, d’) belong to A x A’, then there exists a cell
(¢y¢’) in A x A’ such that (¢, ¢’) € (a, a')n(b, d").

E2. If (a, a’) clings to A x A’ and (a, a’) € (b, b’), then (b, b ) belongs
to AxA'.

It follows easily from the definition that each end is maximal with
respect to set inclusion. The collection of all ends from 8 will by denoted
by E.
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The purpose of the next six lemmas will be to construct a lattice
structure for E.

LemMmA 1.1. For any two ends A X A’ and B X B’, the following two
statements are equivalent:

(1) For each a in A, there exists b in B such that a < b.

(2) For each b’ in B’, there exists a’ in A’ such that a’ < b'.

Proof. Assume statement (1) and let »’'eB’. By El we can
choose z' < b’ with 2’ e B’. For any a in A, a < 2’. Thus, if x€ 4 and
(aya’) e A x A’y then a < 2’ and x < a’, 80 that (z,x’) clings to A x A’.
By E2, b’ € A’ 8o, by E1, there exists a’ in A’ with &’ < b’. The proof of
the converse is similar.

Note that statement (1) is equivalent to A < B, and statement (2)
means that B’ < A4'.

LeMMA 1.2. Let <g be a binary relation on E defined by either of the
statements in Lemma 1.1. Then E is partially ordered by <pg.

Proof. Reflexivity and transitivity are immediate from the defi-
nitions and the transitivity of <. To show antisymmetry assume that

AXA'<gBxB' and BxB <gAxA'.

Let (a,a’) € A x A’. By our assumptions, there exists b in B with
a < b and there exists b’ in B’ with b’ < a’. Thus (b, b’) € (a, a’). Since
any member of an end clings to the end, by E2 we have (a, a’) € B X B’.
Thus 4 x A’ = B x B’. Equality follows from the maximality of epds.

LEMMA 1.3. Let A be a non-empty subset of L which is bounded from
below. Let
B = {b: b <z for some x in A,}
and let . '
‘ B’ = {b': x < b’ for some x in (4,)"}.

Then B x B’ is an end.
Proof. Clearly, B and B’ are non-empty and B < B’.
El. Let (», ') and (y, ¥’) belong to B x B’. It follows from the defi-

nition of B x B’ and from A3 that xvy € B and 2’ Ay’ € B’. By A4, there
exist 2 in B and 2’ in B’ with
svy<z and 2 <a' Ay,
i.e.,
(2,2') € (@, 2')n(y,¥’).

E2. Let (z,2') cling to Bx B’ and let (x,2') €(y,y’). The proof
will be completed if x € A* and 2’ € (4,)*. Let u € A and let » be any
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element such that w < »v. Then v € B'. Since (z, #’) clings to B x B’, we
have z < v. By A7, < 4, 8o that # € A, . Similarly, if « € A, and v < u,
then v € B, so that » € 2’. Thus » < 2, 80 2’ € (4,)".
We omit the proof of the next lemma due to its similarity to the
proof of Lemma 1.3. |
LEMMA 1.4. Let A be a non-empty subset of L which is bounded from
above. Let .
B’ = {b': x < b’ for some x in A}
and let
B = {b: b <z for some z in (A*)s}.

Then B x B’ i3 an end.
LEMMA 1.5. Let AX A’ and B X B’ be ends. Let

C = {c: ¢ < x for some x in (A'VB').}
and let
C' =|¢': x< ¢ for some x in ((A'VB'))*}.
Then C x C’ i8 the lu.b. of A X A’ and B X B’ under the partial order-
mg <g..
Proof. Since A’vB’ is bounded from below, C x ¢’ is an end by

Lemma 1.3. Let x € A and choose a in A with « < a. Then, for any b
in B, < a<avb. Since avdb e C, we have

: AXA <gOxC.

Similarly, B x B’ <g 0 x ¢’. Suppose that D x D’ is also an upper
bound. Then, for any d’ in D’, there exist a’ in A’ and b’ in B’ such that
a’vb' < d. Since a’'vb’' € C’, werhave

CxC' <gDxD'.

Once again we omit the proof of the lemma that follows because
of its similarity to the proof of Lemma 1.5.

LEMMA 1.6. Let A x A’ and B x B’ be ends. Let

0" ={c': w< ¢ for some x in (AAB)*}
and let

C = lo: c < for some z in ((AAB)*).}.

Then Cx C' is the g.lb. of Ax A’ and B x B’ under <g.

We shall use the symbols v g and A g for l.u.b. and g.1.b., respectively,
under the partial ordering <g.

THEOREM 1.1. (E, vEg, Ag) 18 a Dedekind complete lattice.
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Proof. The preceding lemmas establish the lattice structure. Let A
be some index set and assume that {4,x A} (a € A) is a collection of
ends bounded from above by A x A’. Let

B = {b’: r<b' for some z in (UAa)*}
aeAd

and let
B ={b: b< = for some x in ((U4.*),}-
aca

Since | 4, is non-empty and bounded from above by any element
aed

in A’y we infer from Lemma 1.4 that B x B’ is an end. Also, for any a € 4,
A, < B, so that Bx B’ is an upper bound for the collection. To show
that B x B’ is the l.u.b., assume that C x ¢’ is an upper bound and
O x0'<g B x B'. For any (¢,¢’) in C x C’, there exists b in B such that
¢<b. Thus c¢eB. Also, since C x ¢’ is an upper bound of {4,x A}
(a € A), we have

¢ = (U4,
acd

8o that C' < B’. Thus, (¢, ¢’') € B X B’ from which we obtain B x B’ = C x ('.

We proceed to embed the R-lattice (L, v, A) into (E, vg, Ag).
This is done in the natural manner suggested by the following

LeMmA 1.7. Let €L and let &, = {(y,Y'): v (¥,y')}. Then N,
i8 an end. ' '

Proof. Clearly, 4", is of the form A4 x A’, where A = {a: a < =}
and A’ = {a’: v < a’}. Let (a,a’) and (b, b’) belong to A4,. By A3,

avb<z < a' Ab

and, by A4, there exist ¢ and ¢’ such that

avbgc<gr<c <a' Ab.

Thus E1 is satisfied. ‘

Let (p, p’) cling to 4", and (p, p’) €(q,¢'). If ¢ (g, ¢'), then either
¢ non< r or z non< ¢'. Assuming the former, we have p L x. By AT,
there exists y’ such that # < ¥’ and p non< y’. Thus, for any y < z,
(¥, 9') e &, but

¥,y )n(p,p') =9,
contradicting that (p, p’) clings to 4",. A similar contradiction is obtained
by assuming x non< ¢’.
THEOREM 1.2. The mapping f(x) = AN, 8 an 1isomorphism from

(Ly vy A) into (E, v g, Ag). Furthermore, the mapping i onto if and only
if L is Dedekind complete.



184 B.J. ARNOW

Proof. If ¥, = 4, then, by A6 and A7, x = y.
Let f(a) = A X A’ and f(b) = Bx B’. We ghall show that

flavd)c AxA'vgBx B’

from which equality follows by the maximality of ends. Let (z, z') e f(avh)
and choose (y,y’) in f(avb) with (y,y’) € (x,2’). Since y < avb, we
have y € (A’ v B’),. Similarly, since avb < y’, we obtain g’ € ((A'VB’),.)*.
Thus, (x, ') belongs to A x A'v gB x B’. The preservation of the meet
operation is proved in a similar manner.

To show the second part of the theorem, assume that (L, v, A)
is Dedekind complete and that A x A’ is an end. Since each element
of A’ is an upper bound of A, there exists an lLub. z of A anda<z < a’
for each (a, a’) in A x A’. By E1, this can be strengthened to a < z < a'.
Hence, A x A’ = 4 ,, 50, by the maximality of ends, A x A’ = 4/,.

If the mapping is onto, then L is Dedekind complete by Theorem 1.1.

2. Topological structure of R-lattices and ends.

LEMMA 2.1. Let a and b be distinct elements of L. Then there exist dis-
joimt cells (z, ') and (y,y’) containing a and b, respectively.

Proof. Assume a < b. Then there exists 2<a with 2 non< b.
Choose 2’ such that a < 2. Then a e (z,2') and b ¢ (z, 2). Choose (z, ')
containing ¢ with (x, z') € (2, 2’). Then x b, so there exists an element y’
such that b < ¥’ and x non < y’. Choosing any y < b, we have b e(y,y’)
and (2, 2')n(y,y’) = 9.

THEOREM 2.1. The collection B = {(a, a’): (a,a’) € 8} i a base for
a T,-topology on L in which

(a,a’) = {&: a<xr<a}.

Proof. The fact that B is a base for a Tz-topology follows from

Proposition 1.1 and Lemma 2.1. Suppose that z € (a, a’). If y < x, then,
for any y’ such that x < y’, we have

(¥,9")n(a, a") #+09,

so that y < a’. Thus, by A6, z < a'. Similarly, # € ¥y’ implies a < ¥/,
so that, by A7, a < z. If x ¢ (a, a’), then there exists a cell (y, ¥’) containing x
such that

(¥,y')n(a,a’) =0.

If a <z<a', then y < a’ and a <y’ contradicting Proposition 1.2.
ProposiTION 2.1. If {x: a < x < &'} is compact for each cell (a, a’),
then (L, v, A) ts Dedekind complete.
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Proof. Suppose that (L, v, A) is not Dedekind complete. Then
by Theorem 1.2 there exists an end A X A’ which is not of the form 47,.
Choose any (a, a’) € A X A’. Consider the collection {L— {w: u < # < u'}}
for all (u,«') in A X A’. Since A x A’ is not of the form 4,, for each y
in L there exists a cell (u, #’) in A X A’ such that y ¢ (u, ’). Then choosing
(v,?") in A x A’ with (v, v’) € (u, %’), we have y ¢ {x: v <z <v’}. Thus,
the collection is an open cover of L, hence of {#: a < 2 < a’}. Choose any
finite subcollection

{L—{z: ;<o<w} @(E=1,2,..,n).
Let
v =Lub.{u;} and « =glb.{w} @ =1,2,...,n).

Clearly, no element of (u, %) is contained in any member of the sub-
collection. Since (u, u’) € A X A’, we have

(v, u')n(a, a') # O,

so that {r: a < o < a'} is not covered by the subcollection and is non-
-compact.

For each cell (a,a’), let [(a,a’)] denote the collection of ends to
which (a, a’) belongs. Then, since

[(a, a')1n[(b, b")] = [(a, a’) (b, b')] = [(aVvD, a’Ab")],

it follows from Lemma 2.1 that {[(a, a’)]: (a, a’) € 8} is a base for a T,-
-topology on E.

THEOREM 2.2. The mapping from L to E defined by f(x) = ¥, 18 a
homeomorphism onto a dense subset of E.

Proof. The fact that f is one-to-one was established in Theorem 1.2.
It is clear that both f and f~! are continuous, since

f((a" a')) = f(L)n[(a, a’)],

i.e., the topology defined on L is the topology it inherits as a subspace
of E. To show that f(L) is dense in E, let A x A’ be any end, and [(a, a’)]
a basic open set containing A x A’. Then (a, a’) € A X A’ and A4, € [(a, a')]
for any z € (a, a’).
PROPOSITION 2.2. If E is compact, then (L, v, A) i8 bounded.
Proof. By compactness, E is covered by a finite collection {[(a;, a;)]}
¢t =1,2,...,m). Let

b=glb.{a;} and & =1lub.fe;} (¢=1,2,...,n).
Then E = [(b, b')]. Thus, for any a in L, A4, € [(b, b')], 80 b < a < b’.
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