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Introduction. The purpose of this paper is to extend to the case of
Jacobi series the results of [4] and [3] as well as those of [5] concerning
Abel summability of ultraspherical series.

Besides the pointwise a. e. convergence of the restricted Abel summa-
bility of a multiple Jacobi series of a function belonging to L', the weak
type 1-1 estimate for the corresponding maximal operator is proved.
The latter is the main part of this paper. The results of [2] play an important
role in getting the weak-type inequality for the “max” function.

0. Some notation. We shall be concerned throughout this paper
with the spaces L”(J*’) of measurable functions defined on the unit
cube Q of RF.

So the L?(J*f)-norm of f will be defined as

(0.1) ety = [IfP(1=Y)*(1+Y)dY
Q

k

= [P [ (=9 (L +y)idy, ... dy,,

Q j=1

where a; > —1, ;> —1, j =1,2,...,k, p>1. We shall also denote
the integral with respect to the measure (1— Y)*(1+Y)’dY in the fol-
lowing way:

(0.2) fra=yyra+yfay = [rag=’.
Q Q

The (1 — Y)*(14 Y)’dY-measure of the set, where f > 4 (f = 0) and
A= 0, will be denoted as

(0.3) J*{X; f(X)= 4},

P*# will denote the n-th normalized Jacobi polynomial of parame-
ters a, p.
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Given a measurable function fe L' (J*?), we define its multiple Fourier-
Jacobi coefficients in the following way:

k
(0.4) Clgsiny (F)=Chy, ., nk=Qf f (-an ) g,
L

1. Statement of results. Let K*?(r, X, Y) denote the k-dimensional
Watson kernel defined by

k oo
(1.1.1) K**(r, X, Y) ”K 9 (ry, @, ;) = [ [( D)2 (@) Pr P (yy)),
j=1 n=0

where 0 <7; < 1.
By using the estimates of [6], p. 67 and p. 163, we get
(1.1.2)° PR (2)] < O-mat e,
where ¢ = max(a, §) > —1/2. Consequently, we have
(1.1.3)  f(r, X) = D Cppoon 71 oo 10 P2 () L. PP (a3,)
= Qf E**(r, X, V)f(Y)(1—Y)*(1+y)°dY,

where fe L'(J*?).
Notice that (1.1.2) implies

(L14) G, wl < ]7 1) | f gty €

where ||f|l,so.6) denotes the L?(J*#)-norm of f.
1.2. THEOREM. Let a;, ;> —1, a;+8;> —1 and

- k
rt): I X1,
s=1

be an increasing and continuous function on each component such that 7(0)
=0 and r(1) =(1,...,1), where I =1, =[0,1]. Let us define, Jor
f‘ r (Ju,ﬂ)y
Mf(X) = sup |f(r(t), X)|.
o<<i<1

Then

(i) if fe LP(J*F),1 < p < oo, then Mf(X)e L*(J*F) and | Mf(X)l, a5,
< C (D) If lyae8y3

(ii) if fe L'(J*P), then

c
J{X; Mf(X)> 2} < T 1f a8y
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1.3. TuEOREM. Under the conditions on a, B and ?(t) of Theorem 1.2,
if fe LP(J*?) (L < p < o0), then

lim f(r, X) = f(X)
t—1

a.e. and in the LP-norm.

2. Auxiliary lemma.

(2.1) LEMMA 1. Let S be a bounded subset of R™ such that for each x
belonging to S there exists an m-dimensional rectangle R(x), centered al w,
such that:

(a) the edges of R(x) are parallel to the coordinate axes;

(b) the length of the edge of R(x) corresponding to the j-th axis ts
given by

(2.1.1) K@} (1) {h;(z;) + @; (1)},

where t = t(x) and h; is a function depending on x; only, verifying the Lip-
schitz condition

(2.1.2) |h"(81) _hj(s2)l < Cj|81—82|’ j = 1’ 2, ceey m, Cj > 0-

The @;(t), j =1,2,...,m, are increasing functions of the parameter
t >0, continuous at t = 0, @;(0) = 0.

Under the preceding assumptions, it is possible to select a subsequence
{R(x,)} of rectangles satisfying

mSCQRmL

(ii) each xe R™ belongs to at most

(2.1.3) ” [1+log,(1+ C;K))]

different rectangles.

Proof (}). We may assume that K; = 1, since the general case can
be reduced to this case.

Let us decompose 8 in the following way:

(2.1.4) §S= U 8,..4,  wherel,=0or1.

Laeeorlm

(!) The technique employed in this proof can be used in other type of situations
than that of (2.1.1). For example, if instead of the function of (2.1.1) we have
K;9}%(f)P%(hy, p;), where a > 0 and P is a homogeneous polynomial of degree n with
coefficient 1 in the term z™.
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Since for each xS there exists a rectangle R(x, t (x)) whose center
is @, it is possible to define a partition of § according to the following

1
2°[C2+1]°

1
2 [?+1]

Then x belongs to 8, , if and only if (2.1.5) is verified. Note that
there are at most 2™ different sets.

Let us consider a given 8, , . Without loss of generality we may
assume that

0 < ‘Pi(t(@) < hy(x;)
(2.1.5) I —
1< ‘Pi(t(a’)) > hy(x;)

0 for 0 i<k,
(2.1.6) I, =
<

1 fork<eism.

Our next step will be to define a partition of the space, where each
8y,,...1,, Will be given by the union

.....

(2.1.8) (257! < hy(x;) < 2%) for 1< k (d; eZ)

We shall show that on each 871’ * we are in condition to apply
lemma 3 of [2). In fact, let # and y be points of 8fv-% and suppose

(2.1.9) t(x) =1, <t =1(y).
Then for < < k we have
(2.1-]0) 1/2 {(Pl(t _l_h i)}1/2 (Pl/2 t2 {(pl tz _l_h 2 }1/2

<
< 21 (8,) { @i (8) + Ps ()},

This inequality follows from the fact that h;(x;) < 2h;(y;) (see (2.1.8)).
If ¢ >k, we have

(2.1.11) @1 () {@i (1) + Be ()} < @2 (1) {s (L) + By (@)}
Notice that
(2.1.12) hi(2;) < 2°[C% +11g; (1) < 2°[CF +1]@;(2,).

We translate this estimate to (2.1.11) and obtain

(21.13)  @}2 () {galt) + he(@)}? < 28[CE+1T" gy (ty)
< 25103+ 1191 (1) s (b) + By (y) 2.
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_____ dk & subcovering
(at most denumerable) such that each point of R™ belongs to at most

(2.1.14) 2™ m 1 2% ” [1+log, {1 4+25(C% +1)*2}].

j=k+1

different rectangles. Instead of the preceding estimate we shall use a bigger
one, namely

(2.1.15) 2™ ! n {1 +log,[1+25(C2 +1)*2]}.

Suppose now that we S"l """ dk and y belongs to R(z). Then

(2.1.16) s —yl < %wﬁ(t @i (tz) + by (@)}
and we have
(2.1.17) by (a0) — R (y)] < Cilo;—y;) < $C;i (2 ){‘Pi(tz)+hi(a’i)]l/2-
If ¢ < k, the last inequality is dominated by
1/2
which follows from (2.1.5). Thus
(2.1.19) 2%t L hy(y;) < 2%, 0<i<k.

Recalling that (I, ...,1,) has been fixed, suppose now that we are
given a y that verifies

257 < h(y,) < 2% i=1,2,...,m

Suppose also that y belongs to some R(x) with x belonging to
8y,,...,,- Then it follows from (1.2.16) to (1.2. 19) that x belongs to some

.....

most 3’C different sets Sdl d’c Since for each (Jl1 , «++y d;, We have defined

a covering, we infer that Y belongs to at most 3" coverings.
So y belongs to at most

(2.1.20) k2™ m! [ {1 +log,[1+25(C3+1)")

i=1

different rectangles centered at S,  , . Since there are at most 2™ sets
8y,,...1,,» 1t Will mean that y belongs to at most

(2.1.21) 12mm!”{1 tlog,[1+25(CE +1)"2])

different rectangles. This completes the proof.
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3. Estimates for the Watson kernel. The single Watson kernel takes
the form

(3.1.1)
d /2 1
Ka’ﬂ(r’ z,Y) = ,-1/2-0/2—ﬂ/2${k1+2+p0f Zi’Zg v secth+? wcos(d—ﬂ)wd;g},
where
o<w<n/2, k= %(7.1/2 4yl )

U = ’}(1—{17)1/2(1—:”1/2, v = _%(1 +w)l/2(l+y)l/2’
Y = {[{ksocw) —ut o1 —duroi,
Z1 = (ksecw)2—{—u2_vz+1’, Z2 = (ksecw)z_uz_{_w_{_y.

This formula can be found in [1], p. 272. We use the alternative form:

z—y\?
Y2=( 5 )+(k2seczw—1)(k2seczw—wy),

Z, = k*sec*w—}(z+y)+ Y, Z,=ksectw+i(z+y)+ Y.

We shall decompose the single kernel in the sum of four kernels
A, B, C, D defined in the following way:

7t/2

d

(3.2.1) A = t"“"“’z"ma{k”“*”} 7Y sec’ T Pwcos(a — B)wdw,

/2
d sec?toth

3.2.2) B = l/t—el2-plpl+ath f — (YY) ———— cos(a — B)wdw

( ) 0 dt( ) 778 (a—p) y
" d sec?te+Py

(3.2.3) € = gr-an=plpitats f 3 B gy cosla— v,
" q sec?te+Py

(3.2.4) D =t1/2—°/2-ﬁ/2k1+a+f’of E{(Z;ﬁ)—-z;y c08 (@ — B) wdw .

Before beginning with the study of the kernels, we shall state some
elementary estimates.
Let ksecw =8, 1 <8<2, ly/<1,0

< <
(3.2.5) s*—min(x, y) < 4[s —min(z, y)] < 8[s —xy]
< 16 [s —min(z, ¥)] < 16 [s*— min(z, y)],
(3.2.6) C,[(s—1)*+ (z—y)*+(s—1)(1 —min(z, y))]| < ¥
< C,[(s—1)*+ (¢ — y)*+ (s —1) (1 — min(x, y))],
(3.2.7) 1< s +max(w,y)<Z, <0,

2 < 1. Then we have

(3.2.8) s$2—min(z, ¥y) < Z, < C[s® —min(z, y)].
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In what follows we shall suppose that 1/2 <{ <1 and x> 0; conse-
quently, 1 < k¥ < 2. We are going to consider first the kernel 4:

(3.2.9)

/2

4 = _(1+a+ﬂ)k_2t—(1+a/ﬂ+ﬂ/2)f (1 —1t) (ksecw)®F+?

Z:Z°Y

cos(a— B)wdw.

By introducing the new variable s = ksecw, we obtain (suppose
1/2 <t <1 and z > 0, note also that 1 <k<2)

—1—a/2—-8/2 a+B+l dS
Z“JﬂY V2 — k2

(3.2.10) A< (L+a+p)k™

t)f 1 ds
) ZEY sk

< C(ay B)+C(a, B)(1
In the same way we get for B, C, and D, respectively:

(3.211)  |BI< C(a, B)+C(a, B)(1

t)f 282 -1 —uwy ds
ZRZEY (s—k)'*’

(3.2.12) 2
01 0(e, )+ 01a P10 [ e R
(3.2.13) 2 ’
DI < (@ B)+0( A1) [ e (14 2 ) o B

i
But notice that Y < Z; < C. Therefore our four terms are domin-
ated by

min(xz, y))  ds
;25X (s—k)'’

(3.2.14) E = C(a, B)+C(a, )1 — f(s

as it follows by formulas (3.2.1) to (3.2.8).
Our next task will be to estimate the integral

1

n(x, y)J° g

« 1 § —min(x, )
[(z—y)2+ (s —1)2+ (s —1)(1 —min (2, )]"® (s —Fk)'"

(3.2.15) I = (1—t)kf —

ds.

In order to simplify the notation let us introduce ¢ to be defined as
(3.2.16) (@, 1) = (k—1)"2[(k—a)]2.

8 — Colloquium Mathematicum XXX.2



284 L. A. CAFFARELLI AND C. P. CALDERON

LeEMMA 2. The following estimate for I is valid:

00

1 1
(3.2.17) I<0(a,8) D 5 T L@, 1) oW

n=0

X1, 1) denotes the characteristic function of the interval I,(x, t) and I,(,1)
stands for the interval

[ —2"¢(2, 1), 2+ 2" (2, ) ]N[ -1, 1].
Proof. First assume that {x — y| < ¢(, t). Then the following estimate

is valid:

(3.2.18)

[s —min(z, y)] ds
<=0 f [$ —min (@, y)]*(s —1)** [s — min(z, y)]** (s —Fk)'"

1-1) 1 ds
st kf [k —min(a, )" (s — 1) (s— k)"

An integration by parts yields the following inequality:

(1—1) (s —K)"
(3219)  I<0(@ g U 5,, ds+0(a)=

(1—1) 1
[k —min (2, y)]"t'? (k—1)

< C(a)

Notice that for 1 —x > ¢(x,t) we have
(3.2.20) J**{Iy(@, 1)} < O(a, B){[(1 —2) +o(z, 1" — [(1 —2) —g(x, £)]**"}
and for 1 —z < ¢(2, t) we have
(3.2.21) I {I14(, 1)} < C(a, B)[(1 — ) +o(z, )]°T".

In both cases the following inequality can be readily checked :
(3.2.22) I {Iy(x, 1)} < O(a, B)(k—x)°p(x, t).

By using (3.2.19) and (3.2.22) we get (notice that (k—1) ~ (1 —1)2)

C(a,
(3.2.23) I< J,,,ﬁ{(;:(ﬁ 3 0 X1 (¥)-

We were dealing with the case |z —y| < ¢(x, ) and now we are going
to deal with the general case:

neN, 2" 'g(x,1) <lo—y|<2"¢(x,1).
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We distinguish two situations:
(a) (1—=) <2"'p(x, 1),

(3.2.24)
(b) (1—2) > 2" 'p(x, 1).

Situation (a). Notice that y < x. Therefore, since (k—1) < ¢(z, 1)
< |x—yl, it follows that

1+|z=yl

(3.2.25) I<C(a’ﬂ){(1_t)[f 1 ds
k

[s—min(z, o) o—gl (—F"

2

n f 1 ds
, [s—min(@, y)* 2 (s 1) (s—k)" ]}

1+ |x—
2
1—t) |z—y|'? (1—1) ds
<C : .
Gy oy g e e
An integration by parts yields
(1—1) 1
3.2.26 I1<C
( ) (a’ ﬂ){(k—y)a—l lw—ﬂl|5/2 +
(1-1) (1—1)
——|C ds|}< € L O
(k—y)““’z[ Tl (s—1)* 3]} (* ﬂ){lw—yr’“’z}
1+|z—vl
We have used the fact that k—y is of the order of magnitude of
z—y.

In what we have done, we have obtained a convenient estimate for I.
In what follows we shall find a suitable estimate for J*#{I, (z, t)}.
Since 1e¢ I,(x,t), we have the inequality

(3.2.27) J*/(L,(x, ) < C(a, B)[(1—2)+2"p(z, ) 1"
< C(a, B)2°H [2"p(z, 8)]* < Oa, B)lo —y|**,
where we used the fact that
J*([a, 1]) < C(a, B)- (1 —a)**.
On the other hand, we have also

(1—1) (@, 1) 1

(3‘2'28) lw—y|l/2 < [2n—l(p(w’ t)]1/2 = 2(”—1)/2 '

By combining (3.2.26)-(3.2.28) we get for situation (a)

1! 1

(3.2.29) I<C@P om org, @

X e, (Y).
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Situation (b) will be splitted into two subecases (b,) and (b,):

(—y)?
(by) (k=1) <~
_ (@—y)?
(b2) (k—1)> T
Subcase (b,). We have
z—y)2/(1—x
tHE-ait -2 8 —min(z, ¥) ds

(3.2.30) I<C(a, ﬂ)(l—t){ 7 T

F [s —min(z, )1°[z—yT (s—k)

+

14+ (z-v)2/(1—2)

s — min (@, y) ds
[s —min(z, y)]°"*(s —1)** (s—k)'" }

14+(z—v)%/(1—2)

1 ds
<C(a7 ﬂ)(l—t){(1—$)a_l($—y)3 ; m+
1 : ds
+ (1—$)a+1/2 (8_1)3/2(s_k)1/2}'

1+(z—v)?/(1—2)

As before, an integration by parts yields

(1—1) @ (@, t)
(3.2.31) I<0(a,p) ST C(a, B) 1—a2) la—gF "

As in the previous case, we shall give an estimate for J**{I,(z, t)}:
(3.2.32) JP{L, (@, 1)} < C(a, B)(1—)°2"p(x, T).
Recalling that |z —y| > 2" '¢(x, t), Wwe get

C(a, B) 1
o JP(IL,(, 1)) Treoy)-

(3.2.33) I<

Subcase (b,). In this subcase

(3.2.34) I=01-1[<@-y

k 1+(z—v)2/(1—%)

This last integral was already evaluated in (3.2.30) and one can obtain
the same type of estimate as in (3.2.33). This completes the proof of the
lemma.
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4. Proof of theorems 1.2 and 1.3. By using lemma 2, for the multiple
Watson kernel we have

(4.1.1)
ap 1 1
K (?‘, X’ Y) < 0((1, ﬂ) 2n1/2”. 2”k/2 Ja,ﬁ{I_> (X, T)} -XI;:(X,r)(Y)’
n],...,'nk n
where
(4.1.2) N o= (Mg, Mgy ver, M),

Xo(Y) is the characteristic function of @, and
I;: (X, 7) = I (®1, 71) X Ly, (@3, 73) X oo X Ink(wk’ Tx)-

We introduce the following collection of maximal functions:

1
J""B{I_n, (0, (1))}

(4.1.3) M. (f)(@) = sup ()| dT*.

I, (z, )

An application of lemma 1 to the family of rectangles {I_. (X, r(t))}
with "

(4.1.4) o () = k(r;()) =1, Iy(zm) =1—a;, K; =2,
yields the weak type estimate

C(n) ..
(1.1.5) T (1)@ > 2} < Ll e,
where

k

C(n) < onn,..

j=1
Consequently, for p > 1, we have

k

, 1
(4.1.6) I (Dlrety < O =5 ” 131 f lpg o8y -

=1

Theorem 1.2 follows from lemma 1.3 of [4], p. 121, and from
estimates (4.1.1), (4.1.5) and (4.1.6).

Theorem 1.3 follows from theorem 1.2 and from the fact that for
a dense subset of L?(J**), 1 < p < oo, the operator converges everywhere.
Indeed, the set of multiple Jacobi series having only a finite number of non-

-vanishing terms may be chosen as a dense set. This completes both
proofs.
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