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1. Introduction. A set is called a singleton if it . s a one-point set
and it is called a doubleton if it consists of two points. Let 4 be a positive
real number, and let a and b be two points of a metric space (X, d). The
A-set, A(a, b), of a and b is the set {x | d(a, z) = Ad(b, x)}, and X is said
to have the double A-set property (DAP) if there is a number A such that,
whenever a and b lie in X, A(a, b) is a doubleton. If 1 = 1, then the DAP
becomes the double midset property (DMP). There is no generality lost
in assuming that 0 < 1 < 1 since the sets i(a, b) and (1/2) (b, a) are iden-
tical.

A subset S of a metric space is said to be a segment if S is isometric
to a closed interval in B', and a segment with endpoints a and b will
be denoted by S(a, b). A point r is called a ramification point of X if there
exist three points p, ¢, and ¢’ such that r is a midpoint of p and ¢, and

r is also a midpoint of p and ¢'. A point r is between two points p and ¢
means that '

p Fr ?éq and d(Pyr)"'d(r, Q) = d(p’4)7

and r is a midpoint of p and q if r is between p and ¢, and d(p, r) = d(q, 7).
In a segmentally connected metric space there is always a segment S(p, q)
containing r whenever r is between p and ¢ (see [6], Lemma 15.1, p. 44).
A segmentally connected metric space is one in which each two points lie
in some segment. Every convex complete metric space is segmentally
connected (see [6], Theorem 14.1, p. 41) but not conversely. A segment-
ally connected metric space has a ramification point if and only if there
éxist distinet segments S(p, ¢) and S(p, ¢') having a common midpoint .
A get X is non-degenerate if it contains more than one point.

With these definitions we are now able to give more precision to
the statements of our results. Let X be a segmentally connected metric
space with no ramification points. Theorem 3.1 states that X is isometric to
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a geodesic circle if and only if some midset in X is @ doubleton; Theorem 3.3
states that X is either isometric to a geodesic circle or to a connected
subset of E' if and only if X contains a doubleton A-set for some A € (0, 1);
and Theorem 3.4 states that no midset in X can be countable unless it
is a singleton or doubleton.

In Section 4 we consider a segmentally connected metric space X
having the 0-dimensional midset or A-set property. A metric space X
has the 0-dimensional A-set property (0-AP) if there is & A €(0,1] such
that all A-sets in X are 0-dimensional sets. The 0-AP reduces to the 0-dimen-
sional midset property (0-MP) of [7]if A = 1. A space X has the unique
A-set property (UAP) if there is a 4 € (0, 1] such that every A-set in X is
a singleton, and the special case where 4 = 1 i8 called the wnique midset
property (UMP). An example is given showing that the 0-AP is not strong
enougb to rule out ramification points in X; hence it cannot be used to
characterize geodesic circles and subsets of E'. However, the 0-MP does
yield characterizations analogous to those of Section 3. These charac-
terizations are given in Theorem 4.1 and in Theorem 4.2 and its corol-
laries.

Berard [2] showed that a connected metric space is homeomorphic
to a subset of E' if it has the UMP, and he later proved [3] that a convex
complete metric space is a topological simple closed curve if it has the
DMP. Loveland and Valentine [7], and later Berard and Nitka [4], ex-
tended this result by showing that a segmentally connected metric space
is isometric to a geodesic circle if it has the DMP (a short proof of this
result can be found in [8]). However, the isometry exists with the weaker
hypothesis that X contain just one double midset as long as X has no
ramification points (Theorem 3.1). A segmentally connected metric space X
with the 0-MP is isometric to a geodesic circle if and only if some midset
is a doubleton (Theorem 4.1), it is isometric to a connected subset of E'
if and only if some midset is a singleton (Theorem 4.1), and it can have
no countable midset unless it lies in E' or is a geodesic circle (Lemma 2.2
and Theorems 3.4 and 4.1). In addition to these nice characterizations
of subsets of E' and circles we are able to prove Theorem 3 of [7] with
the considerable less hypothesis (see Corollary 4.3); in fact, we prove
an analogue where only one midset is required to be 0-dimensional
(Theorem 4.2).

Buseman [6] characterized hyperbolic and Euclidean spaces among
his G-gpaces using “flat” bisectors (‘bisectors” are the same as “midsets”),
and Beem [1] has announced that a pseudo-Riemannian manifold M
has a constant curvature if and only if midsets are totally geodesic
submanifolds of M. Wilker [10] has studied the connectivity of the mid-
sets of connected subsets of Euclidean spaces.
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2. Basic facts concerning 1-sets. A nice tool for use when dealing
with A-sets is the separation of space by each A-set. This standard sepa-
ration is given in Lemma 2.1, and the proof is a straightforward appli-
cation of the continuity of the metric function. Lemma 2.2 is the key
to the relation between the 0-MP and the absence of ramification points.

LeMMA 2.1. If a and b are two poinis of a connected metric space X
and A € (0, 1], then X — A(a, b) is the union of two disjoint open sets L and R,
where i

L={z|d(a,z)<rd(b,2)} and R = {x| d(a,zx)> Ad(b,x)}.

LeEmMA 2.2. If X is a segmentally connected metric space with the 0-MP,
then X has mo ramification poinis.

Proof. Suppose that r is a ramification point of X. By definition
there exist three points p, ¢, and ¢’ such that r is a midpoint of p and g,
and also a midpoint of p and ¢'. Let S and 8’ be segments from p to ¢
and from p to ¢’, respectively, such that r e §nS§’. Since ¢ #* ¢’, the last
point ' of S8’ is an interior point of both 8 and §’. Thus two points
a and b exist between r' and ¢’ and between r' and ¢, respectively, such
that d(a,r’) = d(b,r'). If t is a point of 8 between p and »’, then

‘

db,ty =d(b,r')+d(r, 1)
since {t,b} = S and, similarly,
d(a, t) = d(a,r')+d(r, 1)
since {a, t} = 8’. Now it is clear that d(b,t) = d(a, t), s0 t € M (a, b). This
implies that a segment S(p,r’) lies in M (a, b), contradicting the 0-MP.
LEMMA 2.3. Let X be a segmentally connected metric space without
ramification points, and let 1 € (0,1]. If a and b are two points of X, then
no segment with either a or b as an endpoint can contain two points of A(a, b).

Proof. Suppose that there is a segment S(a, ¢) containing two points m
and n of A(a, b), where m is between a and n. It follows that

d(m,n) = d(a,n)—d(a,m) = l(d(b’ n)—d(b, m)) < Ad(m, n),

which implies A = 1. But if 1 =1, it is easy to show (using {m,n}
c M(a, b)) that a segment S(b,n) containing m also exists, and then
8(b, n)U S(a, ¢) must contain a ramification point.

Now suppose that a segment S(b, ¢) contains two points m and n
of A(a, b), where m is between b and n. Then

a(m, n) = (b, m)~ a6, m) = 7 (d(a, n) —d(a, m) < 7 d(m, m),

80 again A = 1 and the argument above yields the same contradiction.
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LEMMA 2.4. Let X be a segmentally connected metric space with no
ramification points, and let A € (0,1). If a and b are two points of X, then
no segment containing b can contain two points of A(a,Db).

Proof. Suppose that m and »n are two points of A(a, b) in a segment
containing b. If b is between m and n, then

d(b, m)+d(b,n) = d(m, n)
from which we have

d(a, m)+d(a,n) = Ad(m,n) < d(m, n),

contrary to the triangle inequality. If b is not between m and n, then
Lemma 2.3 applies.

3. The dguble midset and A-set properties. The setting for this section
is a segmentally connected metric space with no ramification points.
We obtain characterizations of nice spaces using the DMP and the DAP.
The main results are Theorems 3.1 and 3.3; Corollary 3.1 to Theorem 3.1
is the DMP characterization given by Loveland and Valentine (see [7],
Theorem 2, and [8]) and by Berard and Nitka [4]. Corollary 3.3 to Theo-
rem 3.3 is the analogue of Corollary 3.1 for A-sets. Theorem 3.4, giving
limits on the cardinality of a A-set when X has no ramification points,
is used along with Theorems 3.1, 3.2 and 3.3 in Section 4.

THEOREM 3.1. Let X be a segmentally connected metric space with mo
ramification points. Then X is isometric to a geodesic circle if and only
if some midset in X conmsists of two points.

Proof. Since one direction of the proof is clear, we assume that
X contains two points & and b such that M(a,d) = {m,, m,}. One of
these points, say m,, must lie in a segment 8 with endpoints a and b.
Let 8’ be a segment with endpoints m, and m,. If S’ contains either a
or b, then in Case 1 below it is shown that X is isometric to a geodesic
circle. Case 2 shows that Case 1 always applies.

Case 1. Suppose that 8’ contains b (the argument is sumlar if 8
contains a). Since

d(my, b)+d(b, m,) = d(my, my) and  {m,, my} =« M(a,bd),

we Bee that a is also between m, and m,. Let 8’ be a segment with end-
points m, and m, such that a € 8", let X —M(a,b) = LUR, where a € L
and b € R as in Lemma 2.1, and let ¢ and d be the midpoints of 8’ and 8'/,
respectively. Since ¢ce R and d eL, a segment W(c, d) must contain
either m, or m,, and both m, and m, lie between ¢ and d. Thus distinet
segments W and W’ exist, with endpoints ¢ and d, such that m, e W
and m,e W'. Let C = WUW". |
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Suppose that there is a point y e X —C. Then y ¢ M(a, b) and we
may assume, for convenience in notation, that y € R. Since d € L, & segment
T with endpoints d and y must contain either m, or m,. But then
TUWUW'US’ would contain a ramification point. Thus we know that
X is a convex simple closed curve ¢ and it follows (see the proof of
Theorem 2 of [7]) that X is isometric to a geodesic circle.

Case 2. Suppose that 8’ contains neither & nor . We may assume
that

d(a,t)>d(b,t) for all te8 —{m,, m,},
since 8'nM(a, b) = {m,, m,}. Let {I;} be a sequence of points of §’ con-
verging to m,, and, for each ¢, let S; be a segment from a to ¢;. If each S;
contains m,, then

d(a, my)+d(m,, t;) = d(a,t;) for each 4.

The continuity of the metric would then imply the existence of
a segment S(a, m,) containing m,, contrary to Lemma 2.3. No 8; can
contain m, unless it also contains b, for, otherwise, S;US would contain
a ramification point. However, if m, and b lie in §; for each ¢, then

d(t;, b)+d(ob,m,) = d(t;, m,) for each i,

and this leads to the confradiction that d(m,,b) = 0, since #; - m,.
Thus, for some ¢, 8; contains neither m, nor m,. But this contradicts
Lemma 2.1 since the endpoints of S; are separated by M (a, b).

CoroLLARY 3.1 (see .[8]). A mnon-degcnerate segmentally connected.
metric space X is isometric to a geodesic circle if and only if X has the DMP

This is an immediate consequence of Theorem 3.1 since, by Lemma 2.2,
the DMP will not permit ramification points.

THEOREM 3.2. Let X be a non-degenerate segmentally connected metric
space with no ramification points. Then X is isometric to a connected subset
of B if and only if X contains a singleton midset.

Proof. Every midset in X is a singleton if X < E'. In the other
direction, we let ¢ and b be two points of X such that M(a, b) = {m},
and let S be a segment with endpoints a and b. Suppose that there is a
point y in X such that y lies in no segment containing both a and b. Since
Y #+ m, we may assume with no lo§s in generality that d(a, y) > d(b, v).
A segment T with endpoints & and ¥y must intersect M (a, b), so meT.
However, SUT now contains a ramification point. Thus an isometry
taking X into E' is easily produced.

COROLLARY 3.2. A mon-degenerate segmentally conmected metric space X
18 1sometric to a connected subset of E' if and only if X has the UMP.

Proof. The UMP rules out ramification points in X by Lemma 2.2,
8o this reduces immediately to Theorem 3.2.
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THEOREM 3.3. Let X be a non-degenerate segmentally connected metric
space with no ramification points. Then X is isomelric to a geodesic circle
or to a connected subset of E* if and only if there is a real number A € (0, 1)
such that X contains a doubleton A-set.

Proof. If X is isometric to a connected subset of E' and 2 € (0, 1),
then points a and b in X are easily found such that A(a, b) is a doubleton.
If X is isometric to a geodesic circle and 4 €(0,1), then, for any two
points @ and b of X, i(a, b) will be a doubleton. Thus it suffices to show
that these are the only segmentally connected metric spaces with no
ramification points having a doubleton A-set for some 1 € (0, 1).

Let a and b be two points of X such that i(a, b) is a doubleton {m,, m,}
for some 4 € (0, 1), where m, lies in a segment 8 with endpoints a and b.
We shall show that the midset M (a, b) contains at most two points.
Theorems 3.1 and 3.2 can then be applied to see that X is isometric either
to a geodesic circle or to a connected subset of E'.

Suppose that M (a, b) contains three points p, ¢, and r, where p € 8
and d(a, q) < d(a, r). Notice that Sn{g, r, m,} = 9. Let

X —4(a,b) = LUR,

where a € L and b € R as in Lemma 2.1. Since {¢g,7} < R and ac L, a
segment S(a, ¢) must intersect A(a, b). But X has no ramification points,
so S(a, ¢) cannot contain m, unless it contains b. If S(a, ¢) contains b,
then d(a, q) > d(b, q¢) contrary to q € M(a,b). Thus S(a, q) contains m,
and, for the same reasons, S(a,r) must also contain m,. Again, X has
no ramification points, so d(a, q) < d(a,r) implies S(a,q) = S(a,r).
However, this contradicts Lemma 2.3, and M (a,b) contains at most
two points. Thus the result follows.

CoROLLARY 3.3. Let X be a mon-degenerate segmentally connected
metric space. Then X is isomelric to a geodesic circle or to E' if and only
if there is a real number A € (0,1) such that X has the DAP.

Proof. Suppose that r is a ramification point of X. As in the proof
of Lemma 2.2, we obtain segments S(p, q) and 8'(p, ¢') and a point »’
such that r’ is the “last point” of Sn§’ and #’ lies in the interior of both 8
and 8’. We let a = ' and we choose b between p and a such that

I%d(a, b) < min[d(a, ¢), d(a, ).

A point £ must exist between b and a such that

d(a,x) =

1+ld(aab)’.
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and points y and 2z exist between a, ¢ and a, ¢’, respectively, such that

d(a,y) = d(a,?2) = d(a,d).

1-2

Then A(a, b) ocontains {z, y, 2}, contradicting the DAP. Thus X has
no ramification points, and Theorem 3.3 applies to show that X is iso-
metric either to a geodesic circle or to a subset I of E'.

Suppose that X is isometric to I, and I is bounded from below. Let g
be the greatest lower bound for I, and choose a number b in I such that
b # g. Choose a between Ab+ (1 —A)g and g. It follows that a is between
g and b since 0 < A < 1. It is easy to check that the i-set A(a, b), relative
to all of E', is

{a——L(b—a), a-+

1-2 1+z(b_“)}’

but
A (b—a)<
a———(b— .
1—1 9

This means that A(a, b), relative to I, contains only one point. Since I
and X are isometric, this contradicts the DAP, and similarly I has no
upper bound. Thus I = E'.

THEOREM 3.4. If X is a segmentally connected metric space with no
ramification points, and a and b are two points of X such that, for some
2€(0,1], A(a, b) contains three points, then A(a,b) ts uncountable.

Proor. Let m, m,, and m, be three points in 1(a, b), where m, belongs
to a segment with endpoints a and b. Since X has no ramification points,
it follows from Lemma 2.3 that either a is not between m, and m, or
a i3 not between m, and m. We assume the points named so that a is not
between m, and m. Suppose that b is between m, and m. By Lemma 2.4,
4 =1, and it then follows (from {m, m,} = M (a, b)) fhat a is between m,
and m, contrary to the above labelling. Since neither a nor b is between m
and m,, a segment 7'(m,, m) can contain neither a nor b.

It follows from the continﬁit.y of the metric and from Lemma 2.3
that a subsegment S(z,m,) of T" exists such that no segment S(a, t)
contains m if ¢ € 8 (x, m,). By Lemma 2.3, m cannot lie between b and m,,
8o, similarly, there is a subsegment S(y, m,) of S(z, m,) such that no
segment S(b,?) contains m if ¢ e S(y, m,;). Since X has no ramification
points, for each ¢ € S(y, m,) different from m,, m, is neither between a
and ¢t nor between b and ¢; hence

{my, m}n (S(a, )uS(b, 1) =G
for every two segments S(a,t) and S(b,t).

5 — Colloquium Mathematicum XXXVIII.2
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Suppose that A(a, b) is countable. Since A(a, b) is closed, it is clear
that S(y, m,) contains a segment 7 such that

Tri(a,b) = 0.

Let X —A(a,d) = LUR, where aeL and be R as in Lemma 2.1.
Sinece the cases are similar, we may assume that 7' = R. For a point t e T

and a segment S(a,?) containing p, put
D ={peiia,b)| teT, pela,b),

and define f: D — T by letting f(p) be a point ¢ such that p e S(a, t).
To see that f is well defined we suppose that there exist distinct segments
S(a, t) and S(a,t’) both containing a point p of i(a, b). By the construc-
tion of 7, neither segment intersects {m,m,}, so T'US(a,t)US(a,t’)
must contain a ramification point. Thus only one segment S(a,?) can
contain p. Since X is segmentally connected, it is clear that, for each
teT, X contains a segment S(a, t) and, since A(a, b) separates a from #,
8 (a, t) contains a point p of D. Then f(p) = ¢ and f is surjective. Since 7'
is uncountable and f is surjective, D must be uncountable. Of course,
this makes A(a,bd) uncountable and this contradiction completes the
proof.

4. The 0-dimensional midset property. In the preceding section we
showed how the more general DAP could replace the DMP, previously
considered in [3] and [7], to yield characterizations of a circle or the
line E'. This section is devoted to an analysis of spaces in which, for
some A € (0, 1], some or all of the A-sets are 0-dimensional. First we give
an example to show that the 0-dimensional A-set property for A # 1 is
not enough to rule out ramification points, and hence one cannot expect
the 0-AP to yield only circles or subsets of E'.

Example 4.1. Let X be the union of three rays with a common
initial point in a Euclidean space. Define the distance between two points
to be their Euclidean distance if they lie in the same ray and to be the
length of the shortest path between them otherwise. Then X is a complete,
convex, locally externally convex metric space with the 0-AP if 1< 1.
Furthermore, if 1< 1, then A-sets are either doubletons or three-point
sets. The example, of course, can be generalized by starting with more
rays.

Berard [2] proved that a connected metric space is homeomorphic
to a subset of E' if it has the UMP. An attempt to use the UAP in a geo-
metric characterization of subsets of a line is futile since no space con-
taining a segment has the UAP unless A = 1. In view of this, Example 4.1,
and our desire to obtain spaces without ramification points, it is clear
that we should restrict 4 to 1 and consider only the 0-MP. Our first result
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is a quick consequence of Lemma 2.2 and Theorems 3.1 and 3.2. Theorem 4.1,
part (1), can be viewed as a generalization of the main result of [8].

THEOREM 4.1. Let X be a segmenially connected metric space with the
0-MP. Then

(1) X s tsometric to a geodesic circle if and only if some midset is a
doubleton ;

(2) X s non-degenerate and isometric to a subset of E' if and only
if some midset i8 a singleton.

In [7] a rather complicated “0- dlmensmna.l weak linear midset prop-
erty (0-WLMP)” was defined and it was proved (Theorem 3 of [7])
that a non-degenerate complete, convex, locally externally convex metric
space with the 0-WLMP is isometric either to a geodesic circle or to E'.
We obtain the same conclusion using the 0-MP in place of the 0-WLMP
(Corollary 4.3). In fact, only one midset must be 0-dimensional if X is
known to have no ramification points (Theorem 4.2). First we give some
definitions and lemmas.

A metric space X is said to be locally externally convex if for each
point p of X there is a neighborhood N of p such that whenever z and y
are two points of N there is a point z such that y is between x and =z.
A segment is maximal if it is a proper subset of no segment. We use B(z, &)
to denote {y | d(x, y) < £}. The proofs of the next two lemmas are not
difficult.

LeMMA 4.1, If m, is a point of a segmentally connected, locally externally
convex meiric space X, then there i8 a positive number & such that no segment
in B(m,, &) is maximal.

LeMMA 4.2. If a segmentally connected metric space has no ramification
poinis, then non-maximal segments are unique.

THEOREM 4.2. Let X be a segmentally connected, locally externally
convex metric space without ramification poinis. If there exist two points
a and b of X such that M (a, b) is 0-dimensional, then X is isometric either
to a geodesic circle or to a connected open subset of E'.

Proof. We show that M (a, b) can contain no more than two points
and then appeal to Theorems 3.1 and 3.2 to show that X is either iso-
metric to a geodesic circle or to a connected subset of E'. However, a
connected non-degenerate subset of E' that is locally externally convex
must be open.

Suppose that M (a, b) contains three points m,, q,, and m,, where m,
belongs to a segment S joining a a.nd b. We use Lemma 2.3, just as in
the proof of Theorem 3.4 (with A = 1), to obtain a segment T'(m, m,)
containing neither a nor b, where m € {m,, mg}. Consequently, I'nS
= {m,}. By Lemma 4.1, there is a £> 0 small enough that

{a,b,m}nB(m,, §) =0
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and po segment in B(my, &) is maximal. Let X — M (a, b) — LUR, where
a € L and b € R. Choose points  and ¥ in SnB(m,, £/2) such that z € L
and y € R. A subsegment T of T'(m,, m) exists such that

TnM(a,b) =08 and T c B(m,, £/2).
No generality is lost in assuming that T < R. For S(z,t), put
B={peM(a,b)| pelS(x,t), teT},

and define g: B — T by letting g(p) be the unique (by Lemma 4.2) point ¢
of the segment S(«,t), where p € §(x, t). To show that g is contiﬂuous,
consider a sequence {p;} of points in B converging to p. By taking sub-
sequences, if necessary, we may assume that {g(p,)} converges to a point
t e T. Suppose that g(p) =t, #=¢t. Then

d(m’?i)'l'd(l’ug(l’i)) = d(-'l»',g(pi)) for each ¢,
80 by the continuity of the metric d we have

d(z,p)+d(p,t) = d(z,1).

However, this yields a ramification point since p also lies between
and t¢,. It is clear now that g is a continuous surjection between a 0-dimen-
sional set B and the 1-dimensional set 7. However, this is a contradiction
since g is also injective by the selection of B(m,, &) and Lemma 4.2.

CoroLLARY 4.1. If X is a non-degenerate complete, convex, locally
externally convex metric space with no ramification points and if some midset
in X is 0-dimensional, then X is isometric either to E' or to a geodesic circle.

COROLLARY 4.2. If X is a non-degenerate, segmentally connected, locally
externally convexr metric space with the 0-MP, then X is isometric either
to a geodesic circle, to an open ray in E', to an open interval in E', or to E".

Proof. Lemma 2.2 shows that X has no ramification points, and
Theorem 4.2 then applies to eliminate X being any space except geodesic
circles and subsets of E'. The locally externally convex hypothesis elim-
inates all subsets of E' cxcept those in the conclusion of Corollary 4.2.

"COROLLARY 4.3. If X is a non-degenerate complete, convex, locally
externally convexr metric space with the 0-MP, then X is isomeiric either to
a geodesic circle or to E'.

QUESTION. Does Theorem 4.2 remain true with the words “locally
externally convex” and “open” removed? (P 1022)

A metric space is said to have the finite midset property (FMP) if
each of its midsets is a finite set, and X is said to have the iriple midset
property (TMP) if each midset in X consists of three points. Loveland
and Wayment [9] have asked if there can be a non-degenerate connected
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metric space with the TMP. It follows from Lemma 2.2 and Theorem 3.4
that no non-degenerate segmentally connected mefric space has the
FMP (unless all midsets are singletons or all are doubletons); hence no
such space can have the TMP.
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