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DILATIONS AND GAUGES ON NILPOTENT LIE GROUPS*

BY

J. W. JENKINS (SUNY, ALBANY)

Let L denote a real, finite-dimensional nilpotent Lie algebra. A family
of dilations {6,},., on L is a one-parameter group of automorphisms of
L given by 8, = r”, where D is a diagonalizable operator on L with eigen-
values 4 = {1 =1, <...< 4,}. For each 1€ 4, let

L, ={XeL|§X =rX)}.

Then L = @L,;, and for each 1 e A there is a projection P, of L
onto L,. Fix a norm ||-|| on L, so that the various eigenspaces L, are ortho-
gonal. Define || on L by

1 X| = sup |IP,X|"".

Aed
One easily sees that |X| = 0 if and only if X =0, and that |8, X]
= r|X|. Any non-negative-valued continuous function on L satisfying
these latter two conditions is called a homogeneous gauge.
Given a relatively compact neighborhood U of zero in L, define 7
on L by

ty(X) =inf{n|X € U"}, where U" ={X,...X,|X;e U},

the multiplication being defined by the Campbell-Hausdorff formula.
In this note we determine when and how z is related to a homogeneous
gauge.

Remarks. For further facts and various applications of homogeneous
gauges and the gauge 7, see [3]-[6] and [7]-[9].

Although it is known that not all nilpotent Lie algebras admit a
family of dilations (cf. [1]), there is currently no classification of those
algebras which do admit dilations. In [4], Goodman shows that the grad-
ed algebra associated with a nilpotent algebra has dilations, and that
these are, “asymptotically”, dilations of the original algebra.

* This research was partially supported by a grant from the National Science
Foundation Grant 4 020-0563A.
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Let
L = L(l) ) L(z) o R (r) ) L(r‘l"l) — {o}

denote the descending central series of L. Fix a norm ||| on L, and define
the function |-| on L by

|X| = sup [| X|'*, where X — ZX,,, X, € LV |L*+D
K

Guivarc’h [6] has shown that |-| satisfies condition (i) of Theorem 1.

The author is indebted to Professors R. Goodman and A. Hulanicki
for discussions that led to this paper.

Assume henceforth that L has a family of dilations {4,},.,, and let
L; and |-| be as above. For t> 0 let L(f) = {X e L| |X| <t} and set
L,(t) = L,nL(t) for each Ae 4, t > 0.
LevMMA 1. There is an a> 0 such that, for all positive iniegers m,
Sy (L1 (1)) = L(a).
Proof. Let ¥ = dimL,, let {Y,,..., ¥,} be a basis for L, that is
orthonormal with respect to |-, and set

@ =sup{|[ Xy, [ (%, T2 ]}
Note that

k
L,(1) < {20,17, gl <1,1<j< k}

J=1

Fix a positive integer », and let

k
X, =Dc,,

Jj=1

be elements of L,(1) for 1 < i < n. Now
=i 1---1x, x,1..|

k'

< 2 Ic‘11’1 ‘ﬂ’il ”[ ») [ Pj—l’ Pj]' . ]]“ <a'k’

pls-...?j‘
Let C™ denote the set of all commutators of length m formed using
elements of {X,,..., X,},

C({';’={Zp: aZ; | log| <1, Z; e C™, 1<i<p,p> }

=1

=UJom™, and 0, = 2@0‘{"’.
m=1

m=1
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P

Z =) a7

=1

is an element of C,, then

(—1)% 1 1
ZX, =
g 2 k Pt Dl DL+ Dt
x[Z (2, [X;...[X; [z [2,[X;...X;]...]

/31 Pk ar

O (—1)"‘l 1 1
= eetty X
24 Pil...q;! p1+...+qk2a‘l Ty

X Ly [y [ Xy [Xyeo (B (B [ Xy K ),

n @ Py L/

where r = p,;+...+p;, and the second summation in the last expres-
gion is over all r-tuples (¢4,...,¢,) in (1,...,p) (cf. [2]). Thus, ZY, € O,
if Z € C, and 1 < j < n. Therefore, X,... X, € 0,.

Let

P
Xl.-.X” =2ﬂ"Zj’
=
where |8,/ <1 and Z; € C for 1 <j<p. Then

IP(Xy... X, = || Z‘)ﬂ,Z,IK qu1le|< Y d¥<a'knt
ZjEC'( ZjEO( ]

ZjEC(‘)
gince O contains at most n' terms. Thus

|X;...X,| = sup|P(X,... n)"m a’kn,

AeA
and hence

1
[yn(Xree - Xo)l = — (X X) < @'k

Therefore, 8,,(L,(1))* = L(a'k).

LEMMA 2. Assume that L, generates L as a Lie algebra. For any com-
pact neighborhood U of zero there exist s, t > 0 such that L(sn) = U™ < L(in)
Jfor all positive integers n.

Proof. By Lemma 5.1 of [3], there is a positive integer k such that
(L, (1))" is a neighborhood of zero. Since L is connected and L(1) is compact,
there is an integer m such that L(1) < (L,(1))™. Clearly, {(L,(t))™| t > 0}

7 — Colloquium Mathematicum XLI.1
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is a fundamental system of neighborhoods of zero in L, and hence, given
U, there is an s > 0 such that (L,(s))™ = U. Also, since

L = U (L),

>0

there is an r > 0 such that U < (L, (¢))™
Now, for all positive integers =,

L(sn) = 8,L(8) = 8, (Ly(8))™ = (Ly(ns))™ = (Ly(8))™™.

Thus, by Lemma 1,

(Ly(r))™ = 6,(Ly(1))™ < 8, L(mna) = L(rmna).

Thus, letting ¢ = arm, we have

L(sn) = (Ly(8))™ < U", L < L,(r)™ < L(tn)
for all positive integers n.

LemMMA 3. If the Lie algebra generated by L, is distinct from L, then,
given any compact neighborhood U of zero and any positive integer k, there
is an N such that L(n) ~ U™ # @ for all integers n > N.

Proof. Let L’ denote the Lie algebra generated by L,, and let B
= {X4, ..., X,} be a basis for L consisting of eigenvectors for {4,}. Under
the assumption on L,, there are X; € B such that X, ¢ L’. Let

A = inf{AL, ~ L' # @).

By relabeling, if necessary, we may assume that X,e L, ~ L'
Let L, denote the span of {X,, ..., X,}. If X, e L,, then either X, e L’
or X;eL,, where 1> 4,. It follows that [X,, X;]e L, if X;, X, € L,,
and hence L, is a subalgebra. Also, if X; € L, and if

[Xn Xo] = aXy+ 2 ﬁka”
k#0

then a = 0, since P, ([X,, X,]) = 0. Thus, as a multiplicative group,
L, is normal in L.

Fix a compact neighborhood U of zero and a positive integer k.
Pick a compact neighborhood U, of zero in L, and an a > 0 such that

U<« U (tX,) U,.

t<a
Then
v U (X0 Uoo (X Uo
il<o
= U (t.Xo)...(t,X,) UpTo-taTo),  Tla%o,,
I¢;1<a

where VX = {(—X)YX| Y € V}. Since U, < L, for all ¥ € L and since
(8, Xy). .. (6, Xo) = (4 ... +1,)X,,
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we have
Ukn c U (tXu)Lo-

lll<an

If
X, ='2x1, where X, € L,,

AeA
and if {t,} is any sequence satisfying |¢,| < an, then, since X, = 0,

lim 8y, (¢, X,) = lim }'t,n X, = 0.

fn—00 Nn—>00 2c4

Thus, given & > 0, there is an N such that
"un(Ulm) < U (t81nXo) (8yyn L) = U (tXo) L,

ti<an 1t1<s
for all n > N. Choosing ¢ sufficiently small we have

L(1) “'U (tXo) L, #9,

|t|<s
and thus

L(n) ~ U = 6,(L(1) ~ 6,,, U*") 2 6,(L(1) ~ | (tX,)L,) # 0.
lti<e

THEOREM 4. Let U be a compact neighborhood of zero in L and let ||
denote any homogeneous gauge on L. The following statements are equi-
valent:

(i) given € > O there exist a, b > 0 such that if | X| > ¢, then
a|X| < 1p(X) < b|X|;

(ii) L, generates L as a Lie algebra.

Proof. Goodman [4] has shown that, given homogeneous gauges
||, and |-|4, there exist a’, b’ > 0 such that

a'| X, <X, <b'|X|, forall XelL.

Thus, we may assume that |-| denotes the gauge defined previously.

Assume that L, generates L. Given U and ¢ > 0, choose 8, ¢t > 0 such
that L(sn) ¢ U™ < L(in) for all positive integers n. Suppose that X is
given with |X|>e If 8(n—1) < |X| < sn, then z e L(sn) =« U", so

(X)) <n< s X|+1 < (714671 | X].
If 7y(X) = m, then X € U™ < L(tm), and thus

Therefore
X < p(X) < (7' + 7N X
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Assume now that L, does not generate L. Fix a compact neighbor-
hood U of zero. By Lemma 3, for each positive integer k¥ there is an
X, e L(n) ~ U* for n sufficiently large. Thus z,(X,)=> kn > k|X,|,
contradicting (i).

Trivial examples show that L, need not generate L. For example,
if L is an Abelian Lie algebra and D is given by a diagonal matrix with
1=d,<d;3<...<d,,, then setting 6, = r” defines a family of dila-

nn?

tions' of L. The corresponding L, generates L if and only if d,, = d,,
=...=4d,,.

This example does not preclude the possibility that if L admits dila-
tions, then, for some dilations of L, the corresponding L, generates L.
The following example shows that this need not be the case.

Let L be the real Lie algebra with basis X,,..., X; and relations

[X,, X.] = X,, [X., X,] = X,
[X,, X;] = X = [X,, X,] = [X,, X,]
and all other commutators of basis elements equal to zero. This algebra
can be realized as a subalgebra of the upper triangular (4 x4)-matrices
with
X =,1,1,1,1,0), X, =(,0, —-1,1,1,0),
Xa =(1,0,1,0, —-1,0),
where we have written (a,, ..., a;) for

0 a a a4

0 o ay a

0 o0 0 as|°
0 0 0 0

If {4,},5, is a one-parameter group of dilations of L for which the
corresponding L, generates L, then we must have

6,X, =rX,, 6X,=rX,, 6X, =rX,,
since {X,, X,, X,} is a basis for L ~ [L, L]. However, since

X, = [X,, X,] = [X,, X,] = [X,[X,, X,]],
and since 4, is an automorphism of L, we have

0, Xy = 46,[X,, X,] =[6,X,,6,X,] =rX,
and

8,Xs = 8,[X,[X,X,]] =rX,.
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This contradiction shows that L, cannot generate L. If one defines

4, by setting 6, = »”, where D is the diagonal matrix having

dyy =dy, =1, dyy = dyy =2, dss = dgg =3

with respect to the basis {X,, ..., X}, then {4,},., is a family of dilations
of L.
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