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1. Introduction. In this paper we shall be concerned with the following
two-sided Stefan-type problem for the heat equation:

Given T, 0 < T < o0, a function s(t), 0 <s(t) <1, 0 <t < T, defines two
regions Q2p and Q7:
Qr = {(x, t)e R x(0, T): 0 <x <s(t)},

(L.1) |
T ={(x, )e Rx(0, T): s(t) < x < 1}.

Now we look for a function s(t), 0 <s(t) < 1, and two other functions
u(x, t) and v(x, t) satisfying:
(a) the equations

(1.2) u, =a’u,, in Q,
(1.3) v, =b%v,, in Qf
with a and b some positive constants;
(b) the initial conditions
(14) s(0)=d, 0<d <1, $0)=c, ceR,
1.5) u(x,0=px), 0<x<d, v(x,0)=¢9(x),d<x<1,

p and g given continuous functions;
(c) the boundary conditions for x =0 and x =1

(1.6) u@,)=0@, vl,)=y@), 0<t<T

¢ and ¥ given continuous functions satisfying compatibility conditions ¢(0)

= p(0) and ¥ (0) = q(1);
(d) the boundary conditions on the free boundary x =s(t), 0 <t < T,

(1.7) §(e) = H(s(®), $(), u(@), v(2), 1),
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ue(s(), £) = f(s(®), 5(1), u(@), v(1), 1),
vx(s(t), t) = g (s (1), $41), u(®), v(®), t).
In these equations we have used the following notation:

(1.9) u(®) =u(s@), 1, v =o(s@),?),

f, g and H are continuous functions defined in some neighbourhood of the
set A:

(1.10) A =[0, 1] xR x {jul < 4lloll+1} x {|v| < 4|yl +1} x[0, T],

where

(1.8)

lloll = sup |@()l,

0<t<T

satisfying the Lipschitz condition with respect to all but the last argument.
Due to (1.7) our problem is a free boundary problem with (1.7) describing the
dynamics of a material wall separating two different media.

Physically, functions f and g describe influence of the flux of heat flow
through a point x = s(t). The process itself changes the position of the point
x = s(t).

We say that a triple (u, s, v) forms a classical solution of our problem if

Uyx, h € C(QT)’ Uxxs Vi € C(er)s
u,eC(Qr "R x(0, 7)), v,eC(Qr nRx(0, T)),
ueC(Qy), veC(2y),

§eC([0, T)

and u, s and v satisfy (1.2)(1.8).

The main result of this paper is the following

THEOREM 1. Let @, ¥, p, q and H be as above. If T > 0 is sufficiently
small, then there exists a unique solution (u, s, v) of the system (1.2)—(1.8).

G. Lamé, B. P. Clapeyron (1831) and J. Stefan (1889) were probably the
first who considered free boundary problems. Since that time many authors
have studied them by using various methods (see [1]-[3], [8] and [10]). For
the one-sided Stefan-type problem, the existence of a unique solution, local
and global in time, has been proved by Tabisz [9]. We acknowledge useful
discussion with A. Krzywicki and K. Tabisz during the preparation of this
paper.

2. Integral equation. It is well known that if a pair (u, v) forms a classical
solution of (1.2)—(1.6) for 0 <t < T, then u, v satisfy the integral equation (cf.
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[5], Sections 60 and 61)
t d
21)  u(x, ) =a*[Ge(x,1,0,1)p(r)dr+ [G(x,t, &, 0) p(&)dé

t

+[[G(x, t, 5(v), T)$(1)— a® Gg(x, t, 5(2), T)]u(s(z), T)de

()

+a? }G(x, t, s(), 1) f(s(7), $(v), u(2), v(2), T)dr, (x, )eQy,
0
' 1
(22) v(x, )= —b*[Gi(x,t, 1, )Y (x)dr—[G'(x, t, &, 0)q (&) dE
0 d

—3'[6’(x, t, s(1), )$(1)— b Gy (x, t, s(1), )] v(s(2), T)dt
0
—b2[G'(x, t, s(1), T)g(s(2), $(x), u(x), v(1). T)dr, (x, ),
0

G and G’ are the Green functions for the heat equation in the half-planes
x >0 and x < 1, respectively:

(2.3)
_ 1 (x—¢)? (x+¢)’
Glx 1,61 = 2a(n(t—1))'/? [CXP (—m)—exp (—4a2(t—t)):|’
(24)
, _ 1 (x—¢)? (x+¢—2)
MR Y = [e"p (‘m)‘“p (‘m)]

TueoreM 2. If a triple (u, s, v) forms a classical solution of the system
(1.2H1.8) for some T>O0, then u(t) and v(t) (cf. (1.9) for definition) are
solutions of the system

(2.5 u(t) =24 }G; (s(®, 1,0, 7)p(r)dr
0
d
+2[G(s(®), t, &, 0)p(&)dé
0
+2 _‘f[G (s(@), t, 5(x), T)$(1)—a* G, (s (e), ¢, s(x), )] u(r)de
0

+2a? }G(s(t), t, 5(1), 1) f(s(z), $(v), u(x), v(v), 1)dr,
0
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' 1
(26) v(t)= —-2b*[Gy(s(®), t, 1, T)Y (v)dr—2[G'(s (1), t, &, 1)q(&E)d¢
0 d

—23[6'(s(t), t, s(r), ©)$(1)—b2 Gy (s(2), t, s(v), 1)] v(r)dr
0

—2b? }G’ (s@), t, s(2), T)g(s(z), 5(z), u(2), v(), t)dx,
0

where s(t) is a solution of ordinary differential equation (1.7).

Conversely, if for some T > 0, (u, s, v) forms a solution of the system (1.7),
(2.5), (2.6) and, moreover, 0 <s(t) <1, 0 <t < T, then u(x, t) and v(x, t) given
by (2.1) and (2.2) together with s(t) form a classical solution of the system (1.2)-
(1.8).

Proof. Using (2.1), (2.2) and (1.7)-(1.8) we obtain (2.5) and (2.6) by
taking x — s(t) + 0 and making use of the known properties of heat potentials

(cf. [5]).
Conversely, let #i, ¥ and s be the solutions of the system (1.7), (2.5), (2.6).
It is well known that u(x, t) and v(x, t) defined by (2.1) and (2.2) satisfy the
heat equations u, = a’u,, in ©; and v, = b?v,, in Q} respectively, regularity
conditions u,, u,, € C(£2y) and v,, v,, € C(2%), ue C(2y), ve C(2%), and bound-
ary conditions u(x, 0) = p(x), v(x, 0)=4q(x), u(0,1)=¢(t), v(1,1) =y ()
with compatibility conditions ¢ (0) = p(0) and ¥ (0) = q(1) (cf. [3], Section 5).
Now passing to the limit x — s(f)+0 in (2.1) and (2.2) we obtain
u(se), ) =), v(s@,t)=75(@),
and hence (1.7) on the free boundary x = s(t). To show that
u,eC(QrNRx(0,T) and v,eC(QrNRx(0, T))
we can use the argument of Tabisz [9]. We consider the auxiliary problem:
i, =a*u,, and ©,=b3%p,,
satisfying
17(0, t) = (0(t), a(x’ O) = p(X),
i (s(1), £) = f(s(®), (), u(®), v(2), 1)
for 0<t<Tand 0< x <d; and
(L, )=y (@), v(x,0)=q(x),
D (s(t), t) = g(s(®), $(8), u(@), v(1), t)

for 0 <t < T and d < x < 1. The method of heat potentials guarantees the
existence and uniqueness of # and ¥ and continuity of i1, and o, up to the
boundary. If we express # and v in the forms (2.1) and (2.2) and compare
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with the original formulas (2.1) and (2.2), passing to the limit x — s(¢)+0 we
get

a(t)—u(t) = }(Gs—az G (—u)dr,
0

v()—v() = — }(G'S—b2 Gy (v—v)dr.
0

Hence, due to the integrability with respect to t of kernels Gs—a?G, and
G'$—b? G} we obtain # = 4, v = v and, in consequence, u, = f, v, = g on the
free boundary.

3. Existence and uniqueness for small time. Due to Theorem 2 it suffices
to prove the existence and uniqueness of a solution for the system (1.7), (2.5),
(2.6). This system can be solved by applying the Banach contraction theorem.
This method has appeared first in [6], and explicitly in Friedman’s memoir
[4].

THEOREM 3. For sufficiently small T > 0 there exists a unique solution of
the system (1.7), (2.5), (2.6).

Proof. Let C[0, T] be the Banach space of continuous functions
defined on [0, T] with supremum norm. Let B}, denote the closed ball
centred at (0, 0) and of radius M >0 in C[0, T] ® C[0, T] (with the norm
ll(x, VI = lIxll +I¥ll)- We define a transformation

¢: By~ C[0, TI®C[0, T]

putting @ (u, v) = (i1, v), where i and v are the right-hand sides of (2.5) and
(2.6), respectively, with s given by (1.7).

LeEMMA 1. For every M >0 and T> O there exists T, 0 < T, < T, such
that, for any (u, v)e By, the equation (1.7) with the initial conditions (1.4) has a
unique solution s defined on [0, T,] such that

(3.1) Is()—d| <2 'min{d, 1-d} =a for te[0, T;],
(3.2 IS()) <w for some w=0 and te[0, T,].

Furthermore, if s;(t), i=1,2 are solutions of (1.7) corresponding to
(w;, v;)e BY, respectively, and s;(0) = d, 5;(0) = c, then there exists a constant
N > 0 such that

Isy () —s2 (1)l
|81 (8)—$2 (1)]

The proof of this lemma is similar to that of the theorem on continuous
dependence on the parameter of solutions of ordinary differential equations

(cf. [7)).

(3.3)

< Nt {||lu; —uyl| +lo; —v,)1},  te[O, T,
< Nt {lluy —u,ll +lv; —v,ll},  te[0, T,].
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LEMMA 2. There exist constants M >0 and T,, 0 < T, < T,, such that

Proof. Without restriction of generality of our considerations we can
put p=q =0 (cf. [9]). Let us write (2.5) in the form

17=11+...+I4

with [; (i = 1, ..., 4) denoting successive integrals appearing in (2.5). Now we
shall estimate I; (i =1, ..., 4) similarly as in [4]. Applying the substitution

s(1)

b= 2a(t—1)'?

and using the fact that
+j®e”‘zdx = 2(n)*/?
we obtain
11| < 202I|G¢||¢Idt 4|lell

and

11, < 2I|G|ISIIuldT Cllull '/
for some constant C > 0. By (3.2) and (3.1) we have

[LEIRS 202IIG¢IIuI dr

1 |s(8)—s(z)
< £2a(1|:(t—t))"2 | t—1 ©
1 s(t)+s(7)

+ [l e‘;2‘1(1]:(t_1,))1/2 —1

(s(t)=s(z))?
XP( 4a®(t—1) de
exp (_M) dt

4a’(t—1)

< C||ul| e112.

Of course, for (s(z), $(z), u(z), v(z), t)e 4 (cf. (1.10)) by (3.2) and the Lipschitz
condition for f we obtain

[f(s(@), $(z), u(x), v(x), 7| < Cllull +Ilvll +1),

and hence

14l < 24° IIGI [fldt < C(llull +1oll + 1) /2.
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Hence, for M =4||¢p||+1 and T3 =min{T,, [(4M+1)C] %} we obtain
llull < M, which implies ||4]| < M in [0, T3]

Writing similarly v =J,+ ... +J, for v given by (2.6) we have, by
Lemma 1.

t
11l < 2b2IIGé| W] de

|yl t (t)
<%0 [Izb(:())me p('%()—r))d

't 2—s(t) (2—s()
*Ba—om "p( 4b2(r—r))dt]

s(t) and _ 2-s(y
2b(1—1)'72 T

respectively, we obtain |J4| < 4||y||. Similarly as before we get

Substituting

B =

a2l < ZIIGIISI ldt < Cllof|t'/?, 0<t<T,.
By (3.1) and |s(t)+s(t)—2| >d for 0<t < T, we have
|J3] < 2b? tj|G;| ljdt < C||v]|t/?, 0<t<T,.
0
Also, by the argument similar to that used in estimating I,, we obtain
Val < 2b fIG'l lgldr < C(llull +1loll + 1)t'2,  0<t< T,

Putting
M =max {4|lol|+1, 4|y||+1} and T, =min{T¥, [4M+1)C] %}
we conclude that |jv]| < M implies ||7]l < M in [0, T,], and hence
&(By) < BI, for any Te[O, T).

LemMMA 3. There exists a constant Ty, 0 < Ty < T, such that the mapping
&:. Bl — BY,, 0 < T< T, (with M > O provided by Lemma 2) is a contraction.

Proof. Let 0 < T< T, and (u,, v,), (¥3, v;)e BY. To estimate
D (uy, v,)—P(uy, vy)
we write

(3.4) 171—172=11+...+I4 and Ul—l_)2=j1+...+j4,
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where I;, J; (i=1, ..., 4) denote the differences of successive integrals ap-
pearing on the right-hand side in (2.5), (2.6). Further we denote by

G'=Gs0...). f'=f(s0,..),

the functions G, f, ... appearing in (2.5) and (2.6) which correspond to (y;, v;),
i =1, 2, respectively.

By Lemma 1, s5;(t) 2d—a >0 for 0<t < T;, so by the Mean Value
Theorem we obtain

t
1| < 24% [|G} ~ Gl |9l de < Clls; —s;l|t"?, 0<t<T,.
0
We now apply to every summand in I, the algebraic identity
ABC—ABC = (A—A)BC+(B-B)AC+(C-C)AB
and proceed similarly as in [4]:

t
I3l < 2[IG" $;uy —G*$,uy| dr
0
t t
< 2 [1G?|I52| luy — ua| dr +2 [|G?| |8, —$,| |uy| de
0 0

t
‘l"2.“Gl _GZI |S°1||u1|d1: = 121 +122+123.
0

By Lemma 2 we obtain

I51 < Clluy —ulf t'/2,

I; < ClI$y =52l 12 < C(lluy —uall +loy —valh)t?, 0<t< T;.
We have also 1,3 < 1,3, +1,3,, where ‘

' 1
I3, = 2Mw£2a(1z(t—t))”’

(51 (=5, (7)) _ ( (52(t) =52 (x))?
xe"p(_ 4a%(1—1) ) P\~ aali—n )
t 1
I3, = 2Mw£2a(n(t—t))”2
(51 () +s, () ( (s2(9)+s5; (1))
xexp(— (-1 —exp| — 2 (1) dr.

Using the inequality [e”*—e™?| <|x—}y| for x, y >0, we have

I3 < CtV3(lluy —ugl| + v, —v,l), O0<t<T;.
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Likewise, by (3.1) and the Mean Value Theorem, we obtain
I32 < CE'2(lluy —usll +llvg—vall), 0<t<T.

Similarly, we have

t
|T3I < 2{12 IIG{I Uy —Gg uzl dt
0

t t
< 2a? (luy —u, |G| dt+2a® [|G; — GF||u,) dr
0 0

< 2a? (|luy — us|| ISI| + M |I$; — $2l1) + C (g — us)| +|lvy — 5l £22,
whence
II3] < C(lluy —ugll +lvy —v,l)t/2, 0<t< Th.

To estimate I,, we write

t
I < 2a° [IG* f1 —G* f?| dr
0

< Zaz((j)IG‘—GZI £ dt+}lGlllf‘—f2ldt)-
0

Then, by Lemma 1 and the Lipschitz condition for f, we have
IIy) < C(lluy —ull+llv, —vsl)t*2, 0<t< Th.
Hence, by (3.4),

(3.5)
ity — ;|| < C(lluy —uall +llvy —v,ll)t*?  for some C >0, 0<t< T5.

In an analogous way we can establish an estimate of #, —7,:
3.6) 15, = B2l < C(lluy —usll +llog —v,l)e*2, 0<t< T

The inequality (3.6) together with (3.5) implies the existence of T; > 0 such
that the map & is a contraction on Bj;, 0 < T < T;. This completes the
proof of Lemma 3 and, consequently, of Theorem 1.
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