COLLOQUIUM MATHEMATICUM

VOL. XVII 1967 FASC. 2

A PROPOSAL CONCERNING THE FORMULATION
OF THE INFINITISTIC AXIOM IN THE THEORY
OF LOGICAL PROBABILITY

BY

. SUSZKO (WARSAW)

1. Let L be the set of closed sentences of some language The ele-
ments of L are of finite length and the set L is closed with respect to
the usual syntactic operations of sentential logic, i.e. the sentences
~a, anf, avf, a—>f, a+ § are in L whenever the sentences a, g
are in L. The set of all tautologies of sentential logic formulated in L
is denoted by the letter 7.
| Let C be an operation of logical consequence defined for subsets
of L. It means that for every X, Y < L:

10 X = {.X) e In

20 if X «¢ C(Y), then C(X) < C(Y).

The set X is called consistent if C(X) 7 L. The symbol X denotes
the set formed by the elements of X and the senftence a. We will write
Cx(a instead of C(X®).

It is assumed that the operatlon C fulfils the following conditions:

3 T < C(9) # L;

40 BeCx(a) if and only if (a - B)eC(X).

Consequently,

30 Cx(a) = L if and only if (~ a)eC(V).

2. Let p(a, 4) be a function with values in the set of real numbers
and defined for every sentence o in L and every subset 4 of L. If the
function p(a, A) satisfies the axioms given below, then we call it logical
probability function based on the logic (L, C). Instead of the notations
pla, 4) and p(a, A®) we will write p4(a) and p,(a|B), respectively.

The following axiom system (I, II, III, IV, V) is a modification
of that of Mazurkiewicz [2]: :

B I 0<py(a).
II. p4(e) =1 if and only if aeC(4).

III. If the set A is consistent and the set A is inconsistent,
then py(avp) = pala)+pa(B).



348 R. SUSZIiO o -

IV. pa(anp) = pa(alB) pa(p).
V. If C(A) = C(B), then p,(a) = pgr(a).

The axioms I, II and III entail the following theorems:

(1) pa(ae p) =1 if and only if Ca(a) = Ca(f).

(2) If C(A) = L, then p4(a) =1 for every ael.

(3) If C(A) # L, then p4(a) = 0 if and only if (~a)eC(4).

3. Let us recall a construction of Kolmogorov [1]. One may define
the p-distance over A of the sentences a, f as follows:

DY(a, ) =1—pa(ap).

Clearly,

4) 0 < D(a, f) < 1.

(5) D% (a, B) =0 if and only if Ca(a) = C4(p).

(6) D% (a,p) = D4(F, a).

(7) DY (a, B) < D4 (a, y)+DE(B, 7)-

The sequence {a,},_,s. of sentences is called p-convergent over A
to the sentence « if and only if lim D% (a,, a) = 0. It is easy to show the

N=00

following theorem (of kolmogorov):

(8) Suppose that the set A is consistent and the sequence {a,V...Vaplnoye,..
is p-convergent over A to the sentence a. If the sets A" are inconsistent
for @ +# 4, then

Pa(a) =nZZPA(an)-

4. One may think in view of (8) that the infinitistic axiom of o-ad-
ditivity is superfluous. However, theorem (8) does not seem to be an
adequate generalization of axiom IIT of additivity. One may try to gen-
eralize axiom III in a logical fashion not using the notion of p-converg-
ency. So, we turn out to certain Tarski’s constructions [3].

The sequence {an}n_1.. i8 called decreasing or increasing over the
set A if and only if, for n = 1,2, ..., a1 €C4(an) OF ayeCy(any,), TESPEC-
tively.

The sequence {ay}n_,.. is called A-convergeni over the set A to the
gentence « if and only if two following conditions are satisfied:

(a) a,eCy(a) for n =1,2,...;

(b) if a,eCy(y) for n =1,2,..., then aeC4(y).

The sequence {a,}n_,.. is called Vv -convergent over the set A to the
sentence « if and only if two following conditions are satisfied:

(a) aeCy(ay) for n =1,2,...;

(b) if yeCy(ay) for n =1,2,..., then yeCy(a).
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Using the notions just introduced it is possible to formulate thcre
equivalent versions of the infinitistic axiom in the theory of logical pro-
bability (ITI®, II1*, IIT*).

III®, Suppose that the set A is consistent and the sequence {az}n_y,...
is v-convergent over A to the sentence a. If the sets A“"%) are incon-

gistent for ¢ # j, then py(a) = D Pa(ay).
=1

II1*. If the set A is consistent and the sequence {a,}n_;. 18 in-
creasing and A -convergent to the sentence a, then p(a)=limp (az).

N=c00
I1I**. If the set A is consistent and the sequence {o,}n_;q . is de-
creasing and v -convergent to the sentence a, then p,(a) =limp(a,).

N=00
Axiom IIT* of o-additivity is a logical generalization of axiom III.
Axioms IIT* and IIT** may be called the awzioms of A-continwity and
of v -continuity, respectively.
It is a matter of routine to prove on the assumption of I, II, III
that axioms III®, IIT*, III** are mutually equivalent.

5. To clarify the relation between axiom III* and theorem (8) two
following theorems may be presented.

(9) Assume 1, 11 and II1. If the set A is consistent and the sequence
{0, V...V @yl rs.. 18 Pp-convergent (for some p) over A lo the sentence a,
then the sequence {ay}n_,s... 18 V-convergent over A to the sentence a.

(10) Assume I, IT and III®. If the set A is consistent and the se-
quence {anln_1. . 18 V-convergent over A to the sentence a, then the sequence
{a;V...Vayly_1a.. U8 p-convergent (for every p) over A to the sentence a.
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