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ON STOCHASTIC PROCESSES
OVER AN ABELIAN LOCALLY COMPACT GROUP

BY

R. JAJTE (LODZ)

Let £ be a set with a o-field B of subsets and with a g-measure p
defined on B and let p(L2) = 1. Let T be an abelian locally compact
group and e the unit element of the group 7. We denote by T* the group
of characters y of the group 7. The unit character is denoted by 1.

A stochastic process over a group 7 is given if to every f¢7 a B-meas-
urable function (with complex values) defined on 2 is assigned:

&=E(,w), tel,wel.

Definition 1. A process & = &(t, w) is called a stationary process
(in the broad sense), see [1] and [2], if

10 (&> = m = const (teT) (1);

20 &eLy(2,p) (teT);

30 (&&s) = b(ts™'), where b(t) is a continuous function defined in 7.

In what follows we will be dealing only with stationary processes.
The function b(t) appearing in 3° is called the correlation function of the
process &. It is easily verified that the function b(f) is positively defi-
nite (2). By the theorem of Weil [5] there exists a finite positive Radon
measure g over 7* such that

(1) b(t) = [ x(t)u(dy).
T

The measure x is uniquely determined by the function b. This meas-
ure will be called the spectral measure of the process & Denote by H,

@ < défgf n(w)p(dw).

(%) i.e. for arbitrary elements tys ..., tx of the group 7 and complex numbers
ly, ..., Iy we have

N
D bt LT > 0.
i,7=1
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the Hilbert space which is defined to be a subspace of the space L,(£2, p)
spanned over the elements of the process & (teT).

The process £ defines in the space H, a unitary representation of
the group 7. Namely, the suitable unitary operators U, are defined by

the formula
Uk = &y 1,8€T

(for the remaining points of the space H, the operators U, are defined
by a natural extension). By the generalized theorem of Stone (see e.g.
[3]) we have for the operators U, the spectral representation

(2) Us = [ 2(s)B(dy),
T

where F(A) is a regular, normed (?) and orthogonal (*) spectral family
of projectors defined on the field of Borel subsets of T*. Putting

(3) F(4) = E(A)E,
we get a spectral representation

(4) § = [ 1) F(dy).
T#

of the process (see [1] and [2]). The function F(A), with values from
the Hilbert space, is called a random measure of the process &. There
exists a close relation between the spectral and the random measures;

(5) (F(A)1 = u(4).

In fact, we have

b(s) = [2()p(dy) = <& = ([ 25 Plan) [2()F(dz)),
T T+

T*

but yx(e) = 1, thus making use of an easily proved formula (5)

{ [f Py [gnFlan)y = [fgt A,
L T e

we have

(*) b(s) = [ z(8)<IP(dg)*.
T*

By the uniqueness of the spectral measure u, (*) yields formula (5).
(3) i.e. E(T) = I, where I is the unitary operator.
(4) i.e. E(A)E(B) = E(4 ~ B).
(5) For simple functions this formula easily follows from the orthogonality
of the random measure F (4):

F(A)F(B) =60 for A~ B=9.



STOCHASTIC PROCESSES OVER A GROUP 353

Definition 2. Let a function f with the values from a linear metrie
space X (with the metric |a— §]) be defined on the group 7. Then function f
is said to possess the mean value over the group T equal to m if for every
& > 0 there exists a system of elements of the group t,, ..., {y such that

) N
R

e tt;) —

,;31 f(tt))—m| < e

The point m of the space X is then uniquely defined. This point will be
denoted by Mpf (see e.g. [4]).

Now we will prove a theorem which is an analog of the classical
law of great numbers for stationary processes [1].

THEOREM. If & is a stochastic stationary process (definition 1), then
(6) ‘ Mp& = F({1}).
Obviously, the process is regarded in this formula as a function
over T with values from the Hilbert space L,(£, p).
Proof. To prove formula (6) it suffices to show that
(7) My [ zt)F(dy) =6,
T\{}

where @ is the null random variable (vanishing almost everywhere on ).
Let || -| be the norm in L,(£2, p). We have

sup
tel

2

(®) H— 406 P (0)
gl T*\{l}

< 2, | zwyran Y[ g i)
k=1 T\{1} I=1 T«\{1)
N

[ o pan
T (1} K, 1=1

N
1

- D atruidn.
TRy T k=1

Thus it suffices to show that the last expression in formula (8) can
be made as we please, the elements ¢,, ..., ¢y of the group being chosen
suitably. To this aim consider a compact set Z < T*\{1}. For every
% €Z there exists a ¢, T such that y(¢,) 1. Denote by O(y, t,) the neigh-
bourhood of the character y given by the formula

1—

2
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Obviously
UOo(x,t,) 4.
xeZ
There exists in Z a finite system of characters y, ..., ym such that

Z < LJIO(XH txi)'

Let n>0. Put by, =1 and Z; = O(xi, t;) ~ Z. Let Z, be a com-
pact set included in Z, such that u(Z,\Z) < ¢/3m. Let us fix for every Z.,

an N, such that
N,
W D1
W, 2o A
7'=1

outside the set Z, for which p(‘Z,\Z,) < ¢/3m and consider the product

m N,
atn = [ [ 5 > 2.

m
On the set Z = |J Z, we have |n(y)| < 5. Moreover
v=1

=1

T P — S S
N,...N

v (71, ...,jm)

Thus, after renumerating the elements of the forms .. tin we

can write
N
1
n(2) =3 D, (0,
k=1
where N = N, N,...Ny,.

Now we write the integral in formula (8) in another form:

N
1
fo(tk)

k=1

2
g =

= f —|—f:0'1—|-0'2.

T™\{IN\Z Z

T\(1}

Let us fix a set Z such that pw(T*\{1}\Z) < ¢ and then apply our
argument to the expression under the integral sign. Hence

o] < |0+ loo] < e+ nu(Z)+ }e,

which completes the proof.
A process & is called ergodic if

MpE =m = (&) = const.
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From formula (6) it follows that a process £ is ergodic if and only if
(9) F({1}) = m almost everywhere on 0.

Let us observe that formula (9) implies
(10) P = |m]?

or, in other words, u({1}) = |m|%.

Observe further that because of the stationarity of the process §&
we have <(F({1})> =m and hence (|F({1})—m| = |F({1})]*— |m[.
Thus (10) implies (9). Therefore the process & is ergodic if and only if
equation (10) holds for the spectral measure p.
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