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In this note we extend the method of uniformization used by Cha-
rzyhski [1] to functions of a complex variable.
Congider the equation

(1) f(z) = g(w),

where f(z) and g(w) are polynomials of the third degree. We will prove
the following

TueorREM. If for any pair (2., we) of complex numbers for which
(1) holds true we have

(2) either f'(z,) = 0 or g'(w,) #+ 0,

then there exist two meromorphic functions z(t) and w(t) defined over the
whole open complex plane such that we have in this plane the equation

(3) flz@) = glw(@).
Proof. Consider the system

_ dz , dw ,

(4) a:g(w), —dt_:f(z)

of differential equations with initial conditions
(5) 2(0) =z, w(0) = Wy,

where (2o, w,) is any fixed pair of complex numbers satistying (1) and f
denotes a complex variable.

In a neighbourhood of ¢ = 0 system (4) has exactly one solution
2(1), w(t) that meets initial conditions (5) and is composed of holomorphic
functions none of which is a constant ([2], pp. 369-372 and 374-375).
Because of the initial conditions the functions z(f) and w(t) satisfy in
this neighbourhood of ¢ = 0 equation (3).
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Let us consider an arbitrary regular curve C without right-hand
end given by equation

(6) t =1t(z), t0)=0, O0<7v<r7,.

We shall consider analytic continuations ([3], pp. 231 and 237)
of the pair of functions z(f) and w(t) along parts of the curve ¢ corres-
ponding to partial intervals <0, 7;) contained in the interval <0, 7,) of
parameter 7. These continuations, if they exist, satisfy at points, where
both functions are holomorphie, the system (4) ([2], p. 488) as well as
equation (3).

Denote by <0, 7") the largest of the described partial intervals for
which there exist analytic continuations of functions z(t) and w(t). There
are two possibilities: either 7* = 7, or 7* < 7,. We shall prove that the
second possibility eannot occur.

We start with some auxiliary considerations.

Note first that if a pair (z, w) of complex numbers satisfies equation
(1), then either both numbers are finite or both are infinite. Next we
shall prove

LeMMA 1. For every pair (2%, w") of finite complex numbers satis-
fying (1) and for every t* there exists exactly one pair of functions 2 (1) and
w(t) holomorphic in a neighbourhood of t* and satisfying the initial con-
ditions
(7) (") =2 and  w(t*) = w"
such that for every pair (z, w) of complexr numbers salisfying (1) and suf-
ficiently close to (2%, w") there exists exactly one t in a neighbourhood of t*
for which we have

(8) z=2() and w=w().

Proof. By the conditions of the Theorem at least one of the num-
bers f'(z*) and g¢'(w*) is different from zero. Suppose we have

(9) g'(w*) #0.

In view of the theorem on the existence of an implicit function,
if a pair (2, w) that is close to the pair (¥, w*) satisfies (1), then the
variable % may be presented as a holomorphic function

(10) w = @(2)
of variable z such that we have w* = ¢(z*) and the equation
(11) f(2) = g(o(2))

holds true in a neighbourhood of z*.
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Consider the differential equation

&,
(12) L~ gulp(2)-

dt
This equation has exactly one solution & = z(t) defined in a neigh-
bourhood of #* which satisfies the initial condition z(t*) = 2*. Because
of (9) we have in a sufficiently small neighbourhood of t* the identity
2 (1)
(13) e =1,
gw|p(2(1)]
Consequently, we have in the same neighbourhood the equivalent
equation :

\ dz N
(13%) JW = t—1*.

The integral on the left-hand side of (13') is computed along any
regular curve joining z and #* and lying in a suitable neighbourhood
of z*. Equation (13’) determines ¢ as a holomorphic function of 2 in some
neighbourhood of 2*, which we may put in symbols as

(14) t=p(2)

with y'(2) # 0 in this neighbourhood. The above mapping is one-to-one
in a suitably chosen neighbourhood of z*. Consequently, the inverse
mapping z = () = 2(1) is also one-to-one in a neighbourhood of ¢*.

If we write w(t) = ¢(2(t)), then, taking into account relations (13%),
(13) and (11), we easily check that the functions 2(f) and w(f) satisfy
equations (4) and initial conditions (7) and are uniquely determined
in a neighbourhood of t*.

There is a small neighbourhood of (z*,w*) such that for a given =
there is only one w such that (2, w) is in this neighbourhood and satis-
fies (1). Now, because to given z there corresponds by (14) exactly one
value of ¢ in a neighbourhood of #*, we finally conclude that for every
pair (2, w) satisfying (1) from a suitable neighbourhood of (z*, w*) there
exists only one value ¢ from a neighbourhood of * such that z = 2(%)
and w = w(t). Lemma 1 is thus proved.

We shall now prove the analogous

LEMMA 1. For every triple of complex numbers t; (j = 1,2,3) nol
necessarily all different there exist three different pairs of functions

!
’

(15) z:Zi(.t)r w:wf(t) (j:11233)

such that the functions z;(t) and w, (t) are meromorphic in a neighbourhood
of #, have the only pole at } , and satisfy in a neighbourhood of & differen-
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tial equations (4) and equation (3). Moreover, for every pair (z, w) of finite
numbers satisfying (1) and sufficiently close to the pair (oo, co) there is
exactly one j (1 < j < 3) and exactly one t in a neighbourhood of tf such that
we have

2=z and w = w;(t).

Proof. Note that in a neighbourhood of the point 2z = oo there
exist exactly three different meromorphic functions

(16) 0 =gy = oyt bt L2 450 4 g0 (=1,2,3)
satisfying the condition
(17) f)=g(pi(z) (1 =1,2,3).

Consider the differential equation

dz "

1 — =Gy ;
(18) 5 = Jol#i(2)

Substitute

1

Because g’'(w) is a polynomial of the second degree, we may bring
equation (18), after having implemented substitution (19), to the equi-
valent form

du
(20) 7o hojt Ayt Agur+ ... = y(u), Ay # 0.
For w» sufficiently close to 0 we have y;(u) # 0. So equation (20)

may be written in the form

du |
(21) _— = |
dat  pi(u)
Writing
1
(22) ) Poi+ i+ pog WP s ey F 0,
7
we get a relation
1 14
(23) Pyt o Py ¥+ o gyt ... =ty

equivalent with (20), where y; is a constant. Denote by u;(¢) a function
satisfying equation (20) or the equivalent equation (23) with initial
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condition
(24) u(t7) = 0
in a neighbourhood of #f (we then obviously have y; = —{7). We see

that for every j = 1, 2, 3 there exists such a function in a neighbourhood
of #f, and, in view of the condition 1,; + 0 of (20) we have

(25) wi(tf) =0 (j=1,2,3).
Putting
(26) 1) = — (t) = o((0)
< — ‘ w; = @;il\Z;
j u,-( 7)) Fil\<i

we check with the aid of (17) and (18) that for every j = 1, 2, 3 the two
functions (26) satisfy in a neighbourhood of ¢ the identity

(17) i () = g(w; (1))
and the differential equation

, dZ;.' i
(18") v (’w,-(t))a

and, consequently, the system (4) of differential equations. Moreover,
according to (25) and (16) the functions (26) have a single pole at 1.

We see that there is a neighbourhood of the pair (oo, oo) such that
for every z there are in a neighbourhood of oo exactly three different
numbers ¢;(2), j =1,2,3, such that f(z) = g(¢i(2)). Consequently,
for every pair (z,w) in a neighbourhood of the pair (oo, oo) satisfying
(1) there exists a j (= 1, 2 or 3) such that w = ¢;(2). On the other hand,
to a given z there corresponds through the first of the functions (26)
exactly one  in a neighbourhood of tf such that we have z = #(t). Thus
for every pair (2, w) in a neighbourhood of (oo, o) satisfying (1) at least
one of equations (15) is satisfied. However, if, for such a pair (2, w), we
had two of these relations, say the first and the second, then we had,
SAY,

¢ =2(t) = 2,(t:) and w=w(h) = Wy (ts) -
In view of (26) we then had

¢1(2) = @2(2)-

Yet this is impossible because functions (16) being different are
mutually different everywhere in a neighbourhood of oo. This completes
the proof.
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We next prove

LemMmA 2. If for a given pair (2*, w*) and a given regular curve €
given by t = t(7) there exists a sequence {t,} such that v, — v* while =, < =*
for every v, and for which we have

(27) 2(t(z)) »2*  and  w(t(z,) - w*,

then the functions z(t) and w(t) admit a holomorphic continuation through
the point t* = t(7%).

Proof. Since f(2(t,)) = g(w(t,)) for » —=1,2,..., where we have
put ¢, for ¢(z,), the pair (z*, w*) satisfies (1). Because of (2) there exists
in a neighbourhood of t* of radius ¢*, say, exactly one solution Z(¢) and
w(t) of the system (4) of differential equations satisfying initial conditions
z(t*) = 2* and w(t*) = w*, and having properties described in Lemma 1.
Consider a pair (2(1,), w({,)) that is sufficiently close to (2*, w*). In view
of Lemma 1 there is in this neighbourhood of #* exactly one point 9,
such that

~

(28) z2(9,) = 2(t,) and w(&,) = w(i,).
Consider the pair of functions
(29) Z(t+9,—t) and w(t+9,—1,).

It follows from the properties of the functions z(¢) and w(t) that ¥,
is close to t* if ¢, is. Functions (29) are so defined and holomorphic in
a neighbourhood of #*—(f,—#,) of radius not less than p*/2. Besides
we may assume that this neighbourhood contains the points f, and ¢*
as well as the part C) of the curve C lying between these points. For
t =1, the functions (29) take on the same values as the functions z(f)
and w(#). In a neighbourhood of t, the functions (29) and the functions
2(t) and w(¢) fulfil the same system (4) of differential equations. More-
over, we have equations (28), which can be viewed as a kind of initial
conditions. Because of the unicity of solutions of differential equations
(4) we have in the considered neighbourhood of #, identically in ¢ the
equations

(30) 2(t+9,—1t,) =z(t) and w49, —1,) = w(t).

Thus we see that functions (29) constitute an analytic continuation
of the functions z(f) and w(¢) over a domain containing the closed curve C¥.
Therefore the functions z(¢) and w(f) can be analytically continued from
the point ¢, along a part of the curve ' that contains #* in its interior.
This proves Lemma 2.
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We now prove an analogous
LEMMA 2. If there is a sequence {7} such that we have v, — " while
1, < 7 for every v, for which

2(t(r,) > 0 and  w (¢(7,)) = oo,

then the functions z(t) and w(t) can be continued meromorphically through
the point t* = t(7").

Proof. In view of Lemma 1’ there exist in a circular neighbourhood
of t* of radius o, say, three pairs of functions

(31) () and w(t) (j=1,2,3)

that are meromorphic in this neighbourhood, have the only pole at '
and fulfil differential equations (4) in a suitable neighbourhood of *
and identity (3) in the whole neighbourhood of {*. Consider a pair (z(t,),
w(t,)), where t, stands for i(z,), which is sufficiently close to (oo, co).
It results from Lemma 1’ that for exactly one j the functions (31) are
so that in a neighbourhood of ¢* there is precisely one point 4, for which
we have

(32) 2;(9,) = 2(t,) and w;(,) = w(t,).
Congider the functions
(33) zi(t+9,—1,) and  w;(t+9,—1).

We conclude from the properties of the functions z(f) and w(t)
that 9, is close to t* if ¢, is. Thus the functions (33) are defined and mero-
morphic in a neighbourhood of #* — (t,— 9,) of radius not smaller than g/2.
Besides we may assume that this neighbourhood contains the points ?,
and t* together with the part C} of the curve C, given by ¢ = t(z), lying
between these points. For ¢ = t, functions (33) take on the same val-
ues as #() and w(f). In a neighbourhood of ¢, functions (33) are holo-
morphie, fulfil the same system (4) of differential equations as do the
functions z(1) and w(t), and, moreover, they satisfy equations (32) which
we cah treat as initial conditions. In view of the unicity of solutions of
differential equations (4), we have in a neighbourhood of i, identically
in t the equations

(34) g(t+9,—1,) = 2(t) and w(t+9,—1,) = w(t).

Thus we see that the meromorphic functions (33) defined in a neigh-
bourhood of t* are analytic continuations of the functions z(#) and w(t)
over a domain containing the closed curve Oy in its interior. This means
that the functions z(f) and w(t) admit an analytic continuation from
point ¢, along the part of the curve ¢ that contains t* as its inner point.
This proves Lemma 2’.
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Let us now return to the proof of the Theorem. Suppose we have
" < 7, for a regular curve O given by equation (6). Take into conside-
ration any sequence {r,} such that z, — " while 7, < * for all ». It is
always possible to select from the two sequences {z(t(z,))} and {w(i(z,))]
two subsequences, to be denoted for brevity’s sake as the sequences
themselves, which, according to the remark on p. 358, either converge
both to finite limits or both tend to co. Lemmas 2 and 2’ imply that
in each case the functions z(f) and w(#) can be analytically continued
along a part of the curve ' containing #* = #(z*) in its interior. This
~contradicts the definition of 7*. Therefore we must have * = 7,. This,
however, means that the functions z(¢) and w(¢) can be analytically con-
tinned in the whole open plane. They are, therefore, univalent mero-
morphic functions and fulfil system (4) of differential equations at every
point of holomorphicity and thus equations (3) as well. Equations (3)
hold true also at the poles. This concludes the proof.
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