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1. Introduction. For each of the three properties, (1) local connec-
tedness, (2) aposyndesis, and (3) semi-local-connectedness, of a compact
metric space, there can be defined a corresponding property (connec-
tedness im kleinen in the first case) which differs from the given
property only in the requirement that a certain set be open instead of
closed or closed instead of open. In view of the equivalence of local
connectedness to connectedness im kleinen, it is interesting to consider
the question of equivalence of the others to their corresponding properties.

This paper * gives a single example of a bounded, plane continuum
showing (1) that the only two of the corresponding properties that are
equivalent globally are local connectedness and connectedness im kleinen,
(2) that in none of these cases is the total absence of one of the properties
equivalent to the total absence of the corresponding property, and (3)
that, unlike total non-aposyndesis and total non-semi-local-connectedness,
total absence of the two corresponding new properties, in compact
metric spaces, does not imply the existence of weak cut points.

Other examples are given showing that neither total non-aposyndesis
nor total non-semi-local-connectedness implies the other for bounded
plane continua. The question of equivalence of these two arises naturally
from the equivalence of aposyndesis and semi-local-connectedness for
compact metric spaces and, in addition, is of interest in connection with
weak cut point theory ([1], Theorem 4).

2. Definitions. The following definitions are stated in a way that
emphasizes the relationship between corresponding properties.

A connected topological space is locally connected (respectively,
connected im kleinen) at a point p if each open set D containing p contains

* This research was supported by the National Science Foundation.
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an open (resp., closed) subset (relative to D) that is a connected neighbor-
hood of p.

A connected topological space M is domain aposyndetic (respective-
ly, aposyndetic) at a point p if, for each distinet point ¢, there is a neigh-
borhood D, of p, a neighborhood D, of ¢, and an open (resp. closed)
connected set A such that M—D, > A o D,.

A connected topological space is semi-connected im kleinen (respective-
ly, semi-locally-connected) at a point p if each open set containing p
contains a closed (resp., open) neighborhood of p, the complement of which
congists of a finite number of components.

3. Examples. The following example indicates the extreme extent
to which all pairs of these properties fail to be equivalent as point pro-
perties and shows that local connectedness and connectedness im
kleinen are the only ones that even come close to being equivalent
globally.

It is obvious that one of the properties in each pair implies its corres-
ponding property as a point property.

Example 1. An aposyndetic semi-locally-connected bounded, plane
continuum H which is connected im kleinen on a dense G, set and has
no non-dense connected open subset; and, therefore, is not (1) domain
aposyndetic, (2) semi-connected im kleinen, or (3) locally connected,
at any point.

The desired continuum H is described as the common part of a se-
quence H,, H,, ... of plane continua defined by induction.

Let D, be the join of the two points P = (}, }) and Q = (4, —3)
with the unit interval. Let K, be the join of P and ¢ with the Cantor
set (on the unit interval). Further, let the complementary domains of K,
in D,, be divided into three classes 4, B and C such that the closure
of the union of each class contains K,. Let H, = D, and H, = D,— C*
(i. e., H, is the set of all points in D, which are not in any member of ().

The closure of each member 7 of A and B is triangulated in such
a way that (1) two sides of each triangle in 7— (P o @) separate P from @
in 7, (2) no four of the triangles in 7 intersect, (3) no triangle is of
diameter greater than 1/2, and (4) all but a finite number of the triangles
thus gotten in H, are as small as one wishes. These triangular disks are
congidered to be the distinguished subdisks of H,. The points P and ¢
are the distinguished points of D,, and D, is the distinguished subdisk
of H,.

If 7 is in A (respectively, 7' is in B) and abc is a triangle in the
triangulation of 7T such that ab separates ¢ from P (resp. from @) in T,
then a and b are the distinguished points of abe.

Assume H;, its distinguished subdisks, and their distinguished points
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are defined. Let D,, D,, ... be a counting of the distinguished subdisks
of H; and, for each j, let P; and ¢); be the distinguished points of D).
Also, for each j, let h; be a homeomorphism of D), onto D such that

hi(P) = P; and h;j(Q) = @;. Let H, , be the closure of Uh ). In

addition let the distinguished subdisks of H; ,, and their dlstlngulshed
points, be the images under the h; of the dlstlngulshed subdisks of H,
and their distinguished points. The &; are chosen in such a way that all
but a finite number of the distinguished subdisks of H; , are as small
as one may wish and also in such a way that no distinguished subdisk
of H;, , has diameter greater than (1/2)''.

co
Let H = (N H;.
i=0 .
To see that H is aposyndetic at any point p of H, with respect to
any other point ¢ of H, let j be the least natural number ¢ such that p
and ¢ do not belong to the same distinguished subdisk of H;, and con-

sider the following main cases.

Casge 1. j = 1.

Case 2. j > 1. Let D be the distinguished subdisk of H; , to which p
and ¢ belong.

(i) The point p is a boundary point of D; in which case p is a distin-
guished point of ) and ¢ is an interior point of D.

(ii) The point p is an interior point of D.

In Case 2, one need only show that there is a subcontinuum K of
D ~ H—gq that contains p in its interior relative to D ~ H. It is con-
venient to choose K as the intersection with H of the closure of the
union of a collection of distinguished subdisks of H; contained in D.
Case 1 is treated in much the same way as Case 2 (ii). The continuum
called for in the definition of aposyndesis can be taken as the conti-
nuum K, chosen above, together with, in Case 2 (i), the closure of
H—D ~ H.

Every aposyndetic, compact, metric continuum (including H) is
semi-locally-connected ([2], Theorem 4).

It is clear that H is connected im kleinen at each point of the dense G,
set, congisting of the common part of the interiors, in the plane, of H,,H,,...

The construction is such that each connected open subset of H;
that contains a distinguished point of some distinguished subdisk D
of H; must also contain a distinguished point of each distinguished sub-
disk of H; contained in the same distinguished subdisk D’ of H;_, as D,
and also must contain a distinguished point of D’. This, together with
the fact that any set of points containing a distinguished point from each
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distinguished subdisk of H; is ((1/2)" ')-dense in H, for each i, implies
that each connected open subset of H is dense in H. This in turn implies
that H is neither domain aposyndetic, semi-connected im kleinen, nor
locally connected at any point.

Although H is totally non-domain aposyndetic and totally non-
semi-connected im Kkleinen, it contains no weak cut points [3].

Example 2. A totally non-semi-locally-connected, bounded, plane
continuum that is connected im kleinen, and hence aposyndetic, at
each point of a dense G, set.

(00) I, Is I,

3
Fig. 1

The desired continuum K is described in terms of the following
construction of a continuum K’. The construction of K’ is similar to that
for Example 1.

Let D, be the join of the unit interval I and the point P = (4, 4).
Let €, be the Cantor set (on I). Let I' be an upper semi-continuous de-
composition of I into points and intervals such that (1) each non-
degenerate element of I’ has its end points in C, and intersects C, in
a perfect set, and (2) the closure, in I’, of the set of non-degenerate
elements of I’ is a Cantor set containing all the degenerate elements
of I' that are in C,. Let A be a homeomorphism of the arc I’ onto
I, = {(z,y) in Dyly = }} that preserves order from left to right. Let
I, 1,,... be a counting of the non-degenerate elements of I'. Let T,
be the triangular disk with vertex P and base I,. Let P be the distin-

guished point of T, and let the closure of | kh(I;) be the distinguished
=1

Cantor set of T,. For each i > 0, let T; be the triangular disk with vertex
h(I;) and base I;. The point h([;) is the distinguished point and I; ~ C,
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is the distinguished Cantor set of 7;. Let K; be the closure of (J 7, as
indicated in Fig. 1. =0

The construction proceeds by induction, as in the preceding example,
using homeomorphisms of D, onto the distinguished subdisks of K;
which carry €, onto distinguished Cantor sets and P onto distinguished
points. The homeomorphisms are chosen so that all the distinguished
subdisks of K; are of diameter not greater than 1 12,

The continuum K’ = () K; is connected im kleinen at each point

i=1

of a dense @, set (the common part of the interiors, in the plane, of
K, K;,...), and is non-semi-locally-connected at each point of K'—C,.
However, it is semi-locally-connected at each
point of ¢,. This defect can be corrected by the
following change in the construction. Let K, = K|
(with the same distinguished subsets). To get
K, , from K; use homeomorphisms of D, onto
the distinguished subdisks of K; as before, except
in the case of distinguished subdisks 7 of K;
containing points of C,, i. e., having their bases
on I. For each of these disks use a homeo-
morphism of D, into the disk as indicated in
Fig. 2. The homeomorphisms on D, are chosen
so that each distinguished subdisk of K; , is of
diameter not greater than 1 /211 except those
having their distinguished Cantor set on I: these Fig. 2

all being of diameter greater than some positive

number & (independent of ¢), and being such that any monotone
sequence of them has an arc as common part. Furthermore, the homeo-
morphisms are chosen so that any irreducible subcontinuum in K

= (N K;, from a point in the common part of a monotone sequence
i=1

of distinguished disks intersecting ¢, to a point not in the common part,

contains a (sinz—1)-continuum having the common part as limiting

interval. The bounded plane continuum K has the required properties.

A simpler example K" of a totally non-semi-locally-connected,
compact, metric continuum that is connected im kleinen on a dense G
subset, exists in E3. Let f(z,y) = siny~!, for (z,y) in K’ and y > 0.
Let K" be the closure of the graph of f.

In a sense, K is as aposyndetic as a totally non-semi-locally-con-
nected, compact, metric continuum can be, since a compact metric
continuum is semi-locally-connected at each point of any open set on
which it is aposyndetic ([2], Theorem 4 (Proof)).
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Example 3. A totally non-aposyndetic, bounded, plane continuum
that is semi-locally-connected at all but two points.

Let X and Y be two Cantor fans of circles with vertices z and Y,
respectively. Further, let I, and I, be arcs in X and Y, each having the
appropriate vertex as end point. Let & be a homeomorphism of I,
onto I, such that h(x) # y. Let M be the union of X and Y, identifying
each 2 of I, with k(z) in I,,. Then M is a totally non-aposyndetic compact
continuum that is semi-locally-connected at each point other than x
and y and which can be imbedded in the plane.

M is as semi-locally-connected as a totally non-aposyndetic con-
tinuum can be.

THEOREM. If T is a totally non-aposyndetic, connected topological
space, then T is non-semi-locally-connected at some two points.

Proof. If T is semi-locally-connected at a point ¢, then M is aposyn-
detic at each point p of T— ¢ with respect to ¢ ([2], Theorem 3 (Proof)).
Since T is non-aposyndetie, 7' contains a point ¢ at which it is non-semi-
locally-connected. Since T is totally non-aposyndetic, 7' is non-aposyn-
detic at g with respect to some point p. Hence 7' is non-semi-locally-
connected at p as well as at gq.
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