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Let D = {0, 1} denote the two-point discrete space. For any car-
dinal number m by the m-Cantor set, we mean the Cartesian product D"
of m copies of D. The 8,-Cantor set is the well-known Cantor perfect
set on the real line. It is known (see e. g. [20], vol. II, p. 13) that every
compact metrizable space is a continuous image of D%. In [1] P. S. Ale-
xandroff defined a dyadic space as a space which, for some cardinal
number m, is a continuous image of D"™. Marczewski in [21], answering
a question raised by P.S. Alexandroff, showed that there exist compact
spaces which are not dyadic. The class of dyadic spaces was investigated
also by Sanin [28], Esenin-Volpin'[12], Alexandroff and Ponomarev [2],
Efimov [6], [7], [8] and Engelking and Pelezynski [10].

This note begins with simple proofs of the four known theorems on
dyadic spaces, in particular, of those of Sanin and Esenin-Volpin.
By Sanin theorem a dyadic space cannot be represented as a union of
its nowhere dense subsets, which form an increasing transfinite sequence
(this is a reinforcement of the classical Baire category theorem). The
theorem due to Esenin-Volpin deals with the relation between char-
acter at every point and weight of dyadic space (for definitions see
footnote (2) on p. 185). In the second part, devoted to dense and
pseudocompact subsets of the Cartesian product of compact metrizable
spaces, we show that the product is the Cech-Stone compactification of
each such subset. This is a slight generalization of a result by Corson
and also an auxiliary theorem for the results of the part three. This
part is devoted to the irreducible dyadic spaces (i.e. the images of D™
under irreducible continuous mappings) and their dense subspaces,
which are called irreducible subdyadic spaces. We prove that a metric
compact space is irreducible dyadic if and only if it is dense in itself.
In connection with the Theorem 3 from [10], which claims that if the
Cech-Stone compactification of the space X is.dyadic, then X is
pseudocompact, we show that the Cech-Stone compactification of any
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irreducible subdyadic pseudocompact space is dyadic. It turns out that
the class of irreducible subdyadic pseudocompact spaces is closed with
respect to the Cartesian multiplication. Two last parts present some com-
plements to an earlier paper on dyadic spaces written by A. Pelezynski
and the second of the present authors. These parts are concerned with
the dyadicity of subsets of basically disconnected spaces and with
extending of mappings from closed subsets of D™,

By space we always mean a completely regular 7',-space, by mapping
we mean a continuous function. The Cech-Stone compactification of
a space X is denoted by fX. It is characterized among all compactifica-
tions of X (to within a homeomorphism keeping X pointwise fixed) by
the fact that every mapping f: X - Z into a compact space Z has a con-
tinuous extension over fX. The Cartesian product (with the Tychonoff
topology) of a family {X,}, s of spaces will be denoted by P X,. For

SeS

every S, < § the projection Ds, PX — P X, is defined, which is
S'ES

a mapping from the whole product P X, onto P X;. In the particular
seS SESO

case of §, = {s,} the mapping Psy = P,y 18 called the projection onto
So-axis. A subset K = PK“ where K, = X, for seS, of the Cartesian

product P X, will be called the cube in P X,. A cube K = P K., where
seS seS seS

K, is a non-empty open subset of X, and the set {seS: K, # X} is finite,

is called a basic cube in P X,. The definitions of all notions from general
Ses

topology which are not defined here can be found in [19], [14] or [20].

1. Simple proofs of some known theorems on dyadic spaces. Let
{Aijir be a family of sets. A subset 7, of T is said to be a A-set for the
family {A;};.p or shortly a A-set, if A, ~ 4, = () 4, for every

teTy
ty, tyeT, with &, # t,.

From a theorem by Erdos and Rado [11], proved also in an elegant
manner by Michael [23], it follows at once that the following Lemma 1
holds under the assumption that m is regular cardinal number (}) of the
form R,,,. Presented here proof of the general case is obtained by an
insignificant modification of Michael’s proof from [23].

LEMMA 1 (Sanin [28], p. 24). For every family {A).» of finile sels,
where T =m >R, is a reqular cardinal number, there evists a A-sel
Ty =T of power m.

Proof (Michael [23]). Assume that every /-set contained in 7 is
of power less than m. In order to obtain the contradiction it is enough

(1) i. e. m cannot be expressed as a sum of less than m cardinal numbers, each
of which is less than m.
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to define a sequence of sets 7, T,, ... satisfying conditions

(1) T,<wm for ¢=1,2,...,
(2) = | ) Py
de=1

Put 7T, = 0 and suppose that the sets T7,,T,,...,T;_, of power
less than m have been already defined. Let

k-1
¥, = U U Ata

i=1 teTy
and let &, denote the family of all finite subsets of F,.. Since the property
of being a A-set is of finite character, then for every BeJ; the set

T(B) = {tel: A; ~ F}, = B}

contains a maximal A-set 7% (B). Moreover, we can assume that
(3) it 4y ~ 4, = B for some t,, {,eT'(B), where t;, #t,, then

m AE = B.
teT*(B)

Since Ty o T w ...
By our assumption, F@ < m for every Bed;, whence by the regular-
ity of m the power of the set
Ty = U 1%(B)
B eg)
is less than m. We shall show that the sets 7, 7T,,... defined in this
manner satisfy (2).

o Ty 1 <m, we have F,, < m and also F, < m.

Suppose that there exists t,e T\ G T;. For B; = 4y, ~ F;&; we
have o
(4) toeT(B)N\T*(B;) for i=1,2,...
For every ¢ there exists ¢;¢T™*(B;) such that
Ay~ (A, \F;) #0.

Indeed, supposing the contrary, we would have 4; ~ 4,= B;
for teT*(B;). Thus, by (3) and (4), T*(B;) v {t,} = T(B;) would be
a A-set containing 7™(B;) as a proper subset, which is impossible by
the maximality of 7™ (B;).

Let us choose a point w;ed; ~ (4, \ F;) for7 =1,2,... The points
Tyy &gy ... are all in the set A, , and, as x;ed, = F;, = F; for ¢ <,
and ;¢ F; they are also different, but this is impossible, because the
set A, is finite.
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LeMMA 2. Bvery family {K};.r, where T=m>8, is a reqular
cardinal number, of basic cubes in D" = P D, contains a subfamily
o seN
{Kt}tsTo such that TO =m and m -Kt # 0.
t(:‘ To
Proof. The set A; = {seS: ps(H;) # D} is finite for every teT.
By Lemma 1 there exists a subset 7', < T which is a A-set for the family

{A};.r and such that T, =m. If () 4, = 0, then the sets of the

LeTy
family {4:};.p, are disjoint and the intersection () K; is non-empty.
beTy
Thus we can suppose that 0 = () 4; = {81, 82y ..., Sx}. For some se-
te‘Tl
quence &;, &y, ..., &, where ¢, =0 or 1 for ¢ =1,2, ..., k, one can find

a subset Ty = T, of power m such that
ps(K;) = for 1Ty, and ¢=1,2,...,k.

Since A, ~ Ay, \ () 4, =0 for t,,4,eT,, with 1, # {,, the inter-
el
section (1) K; is non-empty.
el
From Lemma 2 we obtain

TuroREM 1 (Sanin [28], p. 83). Hvery family of reqular power m > R,
composed of non-empty open subsets of a dyadic space, contains a subfamily
of power m which has a non-empty intersection.

THEOREM 2 (Sanin [28], p. 83). Every decreasing transfinite sequence
G, o2Gy,o...o2G >..., §<a, of type a not cofinal with v,, composed
of non-empty open subsels of a dyadic space, has a non-empty intersection.

Proof. Theorem 2 follows at once from Theorem 1 if we remark
that the power of the smallest ordinal number cofinal with « is a regular
cardinal number greater than N\,.

COROLLARY 1. Dyadic space cannot be decomposed into the union of
its proper closed subsets which form an increasing transfinite sequence
Fioclyc...clF.c..., &§<aof type a, not cofinal with w,.

TueorREM 3 (Sanin [28], p. 84). The intersection of every family of
dense open subsets of a dyadic space X which form a decreasing transfinite
sequence G; > G, o ... 2 G¢ ..., &§ < a, is dense in X.

Proof. If a is cofinal with w,, then the theorem follows from the
Baire category theorem, which is valid in arbitrary compact space.
Suppose that a is not cofinal with w, and let U be an arbitrary non-empty
open subset of X. By Theorem 2, applied to the transfinite sequence
UnrnG o UG o...o00~G>...,&<a, it follows that the inter-
section of our family meets U, i.e. that the intersection is dense in X.
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COROLLARY 2. Dyadic space cannot be decomposed into the union of
its mowhere dense subsets, which form an increasing lransfinite sequence
F,elfyc..clfee . <a

TuHEOREM 4 (Esenin-Volpin [12]). If the character at every point () of
dyadic space X is not greater than m = 8, then the weight of the space X
is also not greater than m (3).

Proof. Let f: D" — X be a mapping of the n-Cantor set D" = P D,
seS

onto X. For every xe¢X the counter-image f~!(x) can be represented as
the intersection of at most m open subsets of D":

(5) f(x) = ( U;, where T(x)<<m.
teT(T)
Let us choose for every xeX a point #"¢f~*(2) and, for every teT'(x),

a basic cube P DL, where D, = D, for s¢S(1) and S(t) < ¥,, such that
SeS

(6) x'e PD. <= U,.

seS

For
S(z) = S(t) and D= N Di

teT(x) teT'(x)
we have by (5) and (6)
(7) @' eK(x) = P Di < f~(x), where Dy = D, for s¢S(z) and

SeS

S(x) < m.
Since {K(x)},.x is the family of non-empty pairwise disjoint cubes
each of which has at most m faces different from the factors of the
Cartesian product P D, it follows from Theorem 6 of [9] (or from

seS .
Theorem 1.2 of [23]) that X < 2™
We may confine our attention to the 2"™-Cantor set D™ = P D,
seS
where D, = D, for se | 8(x) and D; = {0} for seS™ (U S(x), and to the
reX HeX

mapping f = fID™: D™ — X, which maps D" onto X. Since D*
contains a dense subset of the power m (see [17], [21] or [9]), there exists
in X a dense subset X, such that X, <m. Let D™ = P D, < D*,

SeS
where D. = D, for se () S(x) and Dy = {0} for seS\ U S(x). The
wsXO weXO

(2) By the character at a point x of a topological space X we mean the smallest
cardinality of local bases at x. By the weight of a space X we mean the smallest
cardinality of bases of X.

(3) For some generalizations of this theorem see [6] and [T7].
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mapping f = flD": D" — X maps D™ onto X. Indeed, the image f(D")
contains the dense subset X, of X and, as a compact set, it is also closed
in X. Now theorem follows from the fact that the weight of a continuous
image of a compact space is not greater than the weight of this space.

2. Dense and pseudocompact subsets of products. The following
lemma is given without proof in [18] and attributed to Corson. The
proof can be obtained by a slight modifications of the proof either of
Theorem 2 of [4] or of Theorem 2.1 of [5]. Those proofs are based upon
the theorem of Bockstein [3] (see also [27] and [9]), which claims that
for every pair U, V of disjoint open subsets of the Cartesian product
P X, of a number of spaces with countable bases there exists a countable
seS
subset 8, = § such that Ps,(U) and pg (V) are disjoint.

LEMMA 3. For every continuous real-valued function f defined on
a dense subset M of the Cartesian product P X, of spaces with countable

SeS
bases there exists a countable subset S, = S such that f is constant on each
set. M ~ pg,(x), where ve P X,.

SGSO
LeEMMA 4. A subset M of the Cartesian product P X, of a number of
seS
compact metrizable spaces is dense and pseudocompact (*) if and only if

for every countable subset S, = S we have Ps, (M) = P X
5(50

Proof. If M = P X, is dense and pseudocompact then, for any
Seb

countable 8, < S, the image P, (M) is dense in P X, and pseudocompact.

SelN

Since for the metrizable space P X, pseudocompactness is equivalent
seSy

with countable compactness and compactness, we have Psy (M) = P X..
seS

Suppose now _that P, = P X, for every countable subset
565

8, = 8. Clearly M is dense in PX Let f be an arbitrary continuous

seS
real-valued function defined on M and let S, be as in Lemma 3. We

have then f = fops,| M, where f, is a real-valued function defined on P X,

seS
by the formula fy(2) = f(M ~ pg)(x)). Since the set D5, (©) ~ M meets
every non-empty open set V such that wreps,(V), the function f0 is
continuous. Thus the function f is bounded, becaube f(M) = f,( P X)

a compact subset of the set of real numbers. 58

(%) By pseudocompact space we mean a space X such that every continuous
real-valued function defined on X is bounded. For normal spaces pseudocompactness
coincides with countable compactness.
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THEOREM b. The Cartesian product P X, of compact metrizable spaces
seS

is the Cech-Stone compactification of every dense and pseudocompact sub-
space.
Proof. It suffices to show that every mapping from a dense and

pseudocompact subspace M of P X, into the closed interval [0, 1] can
seS

be extended over P X,. But this follows immediately from the proof
of Lemma 4. e

Theorem 5 presents a slight generalization of the Theorem 2
from [4], where someé particular dense and pseudocompact subsets of the
Cartesian product of compact metrizable spaces are examined. Let us
remark that the converse theorem is also true. Indeed, the Cartesian

product P X; of compact metrizable spaces is dyadic and every
seS

M < P X, such tfha)t M = PXS is pseudocompact by Theorem 3
seS

from [107.
The following theorem follows at once from Lemma 4.

THEOREM 6. Let {Pg}s s be a family of Cartesian products of compact
metrizable spaces and let Mg be a subspace of Pg. The Cartesian product

P M, is dense in P Py and pseudocompact if and only if Mg is dense in P
seS seS
and pseudocompact for every seS.

3. Irreducible dyadic and subdyadic spaces. We recall that a map-
ping f: X — Y of a space X onto a space Y is said to be irreducible pro-
vided that f(X,) # Y for every proper closed subset X, = X. It is easy
to see that for an irreducible mapping f: X — Y of a compact space X
we have |

(8) Int f(U) # 0 for any non-empty and open U < X,
(9) Int f(U) ~ Int f(XN\U) = 0 for any open U < X.

Moreover, a mapping f: X — Y from a space X onto a space Y,
which satisfies (8) and (9), is irreducible.

A space X is said to be irreducible dyadic provided that for some m
there exists an irreducible mapping f: D" — X of the m-Cantor set
onto X. A space X is said to be (irreducible) subdyadic provided that there
exists a (irreducible) dyadic space which contains a homeomorph of X
as a dense subspace (°).

It is clear that the image of a dense in itself space (i. e. of the space
without isolated points) by an irreducible mapping is dense in itself.

(5) This class of spaces was investigated first by Alexandroff and Ponomarev
in [2] and [25].
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Hence there exist dyadic metrizable spaces which are not irreducible
dyadic. However we have

THEOREM 7. Every dense in ilself metrizable compact space is irre-
ducible dyadic.

Moreover, in the space of all mappings of the Cantor sel onto such
@ space the irreducible mappings form a dense Gy-set.

Proof. Let X be a dense in itself metrizable compact space and

let o be a metric for X. The space XP% of all mappings of the Cantor
set D™ into X with the metric ¢ defined by the formula

E(f7 g) = SU—pQ(f(a;)’ g(w))
xe DNy
is a complete metric space. It is easy to see that the non-empty (see [20],
vol. I1, p. 13) set

Ry

F = {fex?™ . f(DV) = X}

is closed in X" (ef. [20], vol. 1L, p. 30) and hence it is also complete.
Let {G;}7>, be a countable base of D% composed of non-empty
closed-and-open sets (which are homeomorphic to D) and let

F, = {fF: f(D"\G;) = X}.
The subset

N=US
i:l

of & coincides with the set of all reducible mappings from D% to X.
Since &; is closed for ¢ = 1, 2, ... if suffices to prove, by the Baire cate-
gory theorem, that the sets F\ &F,; are dense in G.

Consider an integer k, a mapping fe&F and an & > 0. It is enough
to show that there exists f*e& such that

(10) fHDMNG) # X
and
(11) olfs ) <e.
Let {U;};", be an irreducible (i.e. such that X |J U; # 0 for

every ¢, < m) covering of X by open sets of diameter less then &, and let
{F;}iL, be a closed covering of X such that F; c U; for ¢+ =1,2,...,m
(see [20], vol. I, p.124). Since D% is zero-dimensional (¢) there exist

(5) A space X is said to be zero-dimenstonal if for any two disjoint zero-sets
(i. e. counter-images of closed subsets of the real line by a continuous real-valued
function defined on X) A4, B there exists closed-and-open set K — X such that
A « E and B ¢ X\ K. For compact X, and for metrizable X with countable Lase,
this is equivalent to the existence of a base composed of closed-and-open sets.
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(see [20], vol. I, p.167) closed-and-open subsets Cy, C,,...,C, of D%
satisfying

D=0, C:nC;=0 for 4+j and [f(C;) < U,
i1

1t follows from the irreducibility of the covering {U,};", that C; # 0
tor i =1,2,...,m. Consider i, <.m which satisfies C; ~ G} #* 0; let
f*: 0F — F; be, for every i # iy, a mapping of the Cantor set C; onto I,
and let f,,f0 be a mapping of the Cantors et C;) ~ G, onto F; . The formula

fi (x) for wxeC; ~ Gy,
fi)=1" ’
o for meOiO\G,‘,,
where 2, is a fixed point of X\ U F; = F; , defines a mapping f{‘;:
. 11
O ) —> F,,jo.
For the mapping f*: D% — X defined by the formula

f*(x) = fi(x), where xeC;,

i

we have
m m
FrD%) = 1(Ue) = Uf!
Thus f*e&. However,
fHDNG) = UF; o {w}
i;é'io

and since X\ (J F; is a non-empty open set in .Y, (10) is satisfied. It is

1#£1
easy to verify tl(l)at (11) is satisfied too.

The first part of Theorem 7 was known (see for example [26], p. 91),
but the proof, to our best knowledge, has been never published. The
proof of the first part is much simpler and can be carried as follows. For
any compact metrizable space X there is a mapping f: D% —~ X of the
Cantor set onto X. By the Brouwer reduction theorem (see [20], vol. II,
p. 27) there exists closed set F, = D such that f(F,) = X and f(F) + X
for ¥ = F ¢ F,. Hence f, = f|Fy: F, -~ X is irreducible. If X is dense
in itself, then so is ¥, which, being zero-dimensional, is homeomorphic
to D% (see [20], vol. IT, p. 58).

COROLLARY 3. Every dense in itself, metrizable space with countable
base is an irreducible subdyadic space.

LuMMA 5. Let two families {Xg}ses and {Y}s.s of spaces and a family
{folses of mappings, where fo: Xy — Y, be given. If the mappings of the
family {f;}ses are irreducible, then the mapping f = Pfs: P X, -~ P Y,

S seS

Se seS

defined by the formula f({xs}) = {fs(x)}, is also irreducible.
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Proof. Consider an arbitrary closed proper subset X, of X = P X,.

seS
Then there exist a finite set §, = {s,,8,,..., %} = § and non-empty

open subsets W, c X, for ¢ =1,2,...,k such that
k
W= p;i'(Wi) = W
i=1

From the irreducibility of Js; it follows that there exists a point
Ys;€ Yo, \Js, (X, \W;)  for i=1,2,...,k.

Let Ys be an arbitrary point of Y, for seS> 8,. Consider the point
¥y = {¥s}e P Y, and an arbitrary point # = {x,}¢ P X, such that f(z) = y.
seS seS

We have then y,, = f, (7,,) and Zo €W, for ¢ =1,2,...,k, i e.
v = {wsyeW <« X\ X, and y¢f(X,) #f(X).

The following theorem follows from Lemma 5:

THeEorREM 8. The Cartesian product of irreducible dyadic (subdyadic)
spaces s irreducible dyadic (subdyadic) space.

Since the Cartesian product of an infinite family of topological
spaces, each of which contains at least two points, is dense in itself, by
Theorems 7 and 8 we have ‘

CorROLLARY 4. The Cartesian product of an infinite family of metriz-
able compact spaces, each of which contains at least two points, is irreducible
dyadic space.

Similarly, by Corollary 3 and Theorem 8 we have

COROLLARY 5. Ewvery dense subset of the Cartesian product of an infi-
nite family of metrizable spaces with countable base, each of which contains
at least two points, is an irreducible subdyadic space.

Let us remark that the Corollary of Lemma 2 in [10] (see also [8])
gives

THEOREM 9. If f: X — Y is an irreducible mapping from a dyadic
space X onto the space Y, then the weight of Y is equal to the weight of Y.

From Theorem 9 it follows at once that the disjoint union of D™
and D", where m,n >N, and m #n, is reducible dyadic (see also
Theorem 5 from [8]). Thus there exist reducible dyadic spaces without
isolated points. There is, however, an open question raised by P.S. Ale-
xandroff whether a dyadic space X which has the fixed character,
m, > N, at every point weX is irreducible.

In the proof of Lemma 6 below we shall use the following criterion
for pseudocompactness (see Lemma 9.13 in [14], p. 134):
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In order that a space X be pseudocompact it is necessary and sufficient
that for any decreasing sequence U, o U, = ... of non-empty open subsets
[e9]
of X the intersection () U; be non-empty.
i=1
LemmA 6. If f: X — Y is an idrreducible mapping from a compact
space X onto a space Y, then for every dense and pseudocompact subspace
M < Y, the counter-image f~1(M) is pseudocompact and dense in X.
Proof. From (8) it follows at once that f~*(M) is dense in X. To
prove that f-1(M) is pseudocompact, consider a decreasing sequence
7, > U, > ... of non-empty open subsets of f~(M). Denote by V,,
V,y, ... open subsets of X satisfying

(12) Vio Vo atid Hi=V¥Viesl UM 1I0F4+=1,2,.:

By (8) and the fact that M is pseudocompact and dense in Y there
exists a point

(13) yeM ~ (YM ~Int f(V;) # 0.
1=1
For any open set V = X which contains f~'(y) we have y¢f(X\ V)
= f(XNV) 2 YNf(V), i.e. yelnt f(V), because the image f(X\ V) of
the compact subspace X\V of X is closed. Thus, by (13), yeInt f(V

~ Int f(V;) and Int f(V) ~ Int f(V;) #0 for i« =1, 2,
From (9) it follows then that

0#17ﬁ1711CVf\ V& for 1::1,2,...
and, by the normality of X, that
(14) Vinf(y) 20 for i=1,2,...

Since X is compact we have, by (12), (14) and the fact that f~1(M)
is dense in X,

0 1A T =F W~ N A Vie 200 ~ N T,

1=1
which implies the pseudocompactness of f~1(M
TueoreM 10. The Cech-Stone compactification of any irreducible
subdyadic pseudocompact space is an irreducible dyadic space.
Proof. Let X be a pseudocompact space which has an irreducible
dyadic compactification ¢X and let f: D™ — ¢X be an irreducible mapping

from D™ onto ¢X. By Lemma 6 the counter-image M = f~1(X) is dense
in D™ and pseudocompact, whence by Theorem 5 we have fM = D™,
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Consider a mapping ¢g: X — ¢X which is the identity on X and an
extension f': D™ - pX of the mapping f =flM: M —~ X. Since
" = g(f'|M), we have f = gf’. Hence for arbitrary closed subset ¥ = D"
such that f'(F) = pX we have

f(F) = gf (F) = g(pX) = X

and, by the irreducibility of f, ¥ = D™. Thus f': D™ — X is irreducible.

COROLLARY 6. The continuous image of any irreducible subdyadic
pseudocompact space under irreducible closed (7) mapping is pseudocom-
pact and irreducible subdyadic.

Proof. Let X be pseudocompact and irreducible subdyadic and
let f: X — Y be an irreducible closed mapping from X onto Y. The ex-
tension f': X —> BY of f to AX is irreducible. Indeed, if f'(F) =Y
and ' # X, then there would exist zef X\ F and open sets U, V < X
such that # =« U, zeV and U ~ V = 0. Hence we would have

fOAX)=fU~AX)=Y~f(U~AX)> Y ~f(U~X)
>YAf(F) =7,

which is impossible since 0 # V ~ X <« X\ U and f is irreducible. The
Corollary follows now from the fact that the composition f'g: D™ — g7Y,
where ¢g: D" — pX is an irreducible mapping which exists by Theorem 10,
is irreducible.

THEoOREM 11. The Cartesian product of a number of irreducible subdy-
adic pseudocompact spaces is a trreducible subdyadic pseudocompact space

Proof. Consider a family {X},.¢ of irreducible subdyadic pseudo-
compact spaces. Let, for every sef8, ¢X; be an irreducible dyadic compac-
tification of X, and let f,: D™ — ¢X, be an irreducible mapping from

D" onto ¢X;. By Theorem 8, it suffices to show that P X, is pseudo-
seS

compact.
By Lemma 6 the counter-image M, = f;'(X,) is pseudocompact
and dense in D™, It follows from Theorem 6 that the Cartesian product

P M., and hence also its continuous image P X, is pseudocompact.
seS seS

We do not know, whether (P 497) Theorems 10 and 11 are valid
if the word ,,irreducible” is omitted in their formulation.

Let us remark also that in the proof of the theorem by Mardegi¢
and Papi¢ ([22] Theorem 14) asserting that a dyadic space Y is the
continuous image of an ordered compact space if and only if Y is metriz-

(") A mapping f: X — Y is called closed if the image of every closed subset
of X is closed in Y.
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able, the irreducible mappings can be used instead of light quasi-open
mappings. Indeed, let f: X — ¥ be a mapping from an ordered compact
space X onto Y; we can find, as in the proof of Lemma 2 of [22], a closed
subspace X, < X such that f1 fIX,: X, — Y is irreducible. It follows
from (8) and (9) on the basis of the well-known fact that every family
of non-empty pairwise disjoint open sets in dyadic space is countable
(see [21]), that the same is true in X,. By a reasoning similar to that in
the proof of Lemma 5 of [22] it appears that every open set in X, is
F,-set. Hence every closed set in X, is Gy-set and so is every point in Y.
Metrizability of Y follows then from Theorem 4.

4. Dyadic subspaces of basically disconnected spaces. Tt is shown
in [10] that there is no infinite extremally disconnected (8) dyadic space.
As R. Sikorski has remarked (see [10], footnote (¥)), in a similar way
one can prove that every basically disconnected dyadic space is finite.
Since the basic disconnectedness is not hereditary with respect to closed
subsets (see [14], Problem 6 W. 4, p.100), the fact that every dyadic
subspace of a basically disconnected space is finite requires a special
proof. This proof is a modification of the proof of Theorem 4 from [10].

We begin with a lemma which follows also from some results in [14]
(see Theorem 14.25 p. 208 and Problem 14 N. 4, p. 215).

LEMMA 7. In a basically disconnected compact space Y the closure
of every set X = ) Vi, where V; are closed-and-open in Y and disjoint,
t=1

18 homeomorphic t0 pX.
Proof. It suffices to prove that every continuous function f from X

into the closéd interval I = [0, 1] can be extended over X.
Consider two disjoint closed sets 4, B = I. For every i = 1,2,

~f(4) and V;~fYB

are disjoint zero-sets in Y. Hence there exist (see footnote (%)) closed-
and-open sets KE; =« Y such that

Vinf(4) < B; and V;~fYB)c X\E; fori=1,2,

The sets U =V, ~ E; and W = | V,\ E; are closed-and-open
i=1 1=1

() A space X is called ewtremally disconnected if every open set has an open
closure. X is basically disconnected if every cozero-set (i.e. a complement of
a zero-set) has an open closure. Hence every extremally disconnected space is basic-
ally disconnected. It is easy to see that X is basically disconnected if and only if X
is zero-dimensional and every set which is a countable sum of closed-and- -open sub-
sets of X has an open closure.

Colloquium Mathematicum XIIT 2 13
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and disjoint. Since we have
f14)< U and fY(B) < W,

the sets f~1(A) and f~*(B) have disjoint closures in X, which implies, by
a theorem from [29], that f can be extended over X.

The following Lemma is a generalization of Theorem 4.1 from [13];
it can be also obtained by a modification of the proof of this theorem.

LEMMA 8. Every infinite compact subspace X of a basically discon-
nected space Y can be continuously mapped onto the Cech-Stone compacti-
fication BN of the space N of positive integers.

Proof. Since the Cech-Stone compactification of a basically discon-
nected space is basically disconnected (see [14], Problem 6 M. 1, p. 96),
we can suppose that Y is compact. Because X is infinite and Y has a base
composed from closed-and-open sets, there exist in Y closed-and-open
sets V,, V,, ... such that

By Lemma 7 the mapping f: X, = |J V; — N defined by the
=1

condition
(V) =4 for 4=1,2,..

can be extended over X,. Since X, is closed-and-open subset of Y, it
can be also extended over the whole Y. From the first part of (15) it
follows that N < f(X), whence, X being compact, we have f(X) = pN.

COROLLARY 7 (Gillman and Jerison [14]). FEwery infinite compact
subspace of a basically disconnected space has the power greater than or
equal to 27,

In [14] this Corollary is deduced from the fact (Problem 9 H. 2,
p- 137) that every infinite compact subspace X of a basically discon-
nected space contains a homeomorph of gN. To prove this let us remark
that the set M = () {x;}, where x;eX ~ V; (see (15)), is closed in the

g=1
space X, (which is normal as an F,-set in the normal space Y) and homeo-
morphic to N, whence (see [14], p. 89)

BN =M = M ~ pX, = M c X.

The following theorem follows from Lemma 8 and Theorem 3 of [10]:

THEOREM 12. Hvery dyadic subspace of a basically disconnected space
s finite.

A. Pelezynski has remarked that Theorem 12 can be also proved
by the ,,function space method” as follows. If X is a closed subset of
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a basically disconnected compact space ¥, then there exists (see [14],
p. 141) an epimorphism (of rings) ¢: O(Y) —» (X). If X is infinite then X
can be continuously mapped onto the one-point compactification of the
discrete space of power ¥,, because X has a base composed of closed-
-and-open subsets. Hence if X i3 dyadic, there exists a linear mapping v
from C'(X) onto its subspace isomorphic to the space ¢ of all convergent
sequences of real numbers (see Lemma 6 in [10]). Therefore e 18 a linear
mapping from C(Y) onto ¢. But by an argument of Grothendieck (see
p- 168 of [15]), there is no linear mapping from C(Y) onto ¢ for any
basically disconnected compact space Y. .

Theorem 12 follows also from the theorem of M. Katétov quoted in
the footnote (2) of [10].

In the theory of Boolean Algebras (see § 31 of [16]) from this theorem
follows that any projective Boolean Algebra which is a homomorphic
image of o-complete Boolean Algebra is finite.

5. A theorem on extending of mappings from closed subsets of D™
We prove now

THEOREM 13. For every mapping f: A — X from a non-empty closed
subset A < D™ into a metrizable separable space X there exists an extension 'E
D" — X such that f(D™) = f(A).

Proof. We can suppose that X = I™ is the Hilbert cube; by
Tietze-Urysohn extension theorem there exists an extension Fo DY o=

= P D, > 1I%of f. From Lemma 3 (or Lemma 2 in [10]) it follows that
seS

there exists a countable subset S, = § such that ' = f"ps, where f”:
D% —= P D, > I%. The set pSO(A) is a closed subset of P D, and

selS se8y
therefore there exists (see [20], vol. I, p. 169) a retraction (°) r: P D; —
seS

— Ps,(4). The mapping [ = f"rps;: D" —I™ satisties the required
conditions because we have
f(a) = ["rps,(a) = f"ps,(a) = f'(a) = f(a) for aed

and
f(D™) = f"r(ps, (DV) = T(SIS) D) = [ (ps,(4)) = f(4) = f(4).

COROLLARY 8. For every compact metrizable subspace X of D™ there
exists a retraction of D™ onto X.

Let us recall that for every closed Gs;set X in D™ there exists also
a retraction of D™ onto X (see [10], p. 57).

(?) By a retraction we mean a mapping r: X — A of the space X onto its sub-
space A such that r(a) = a for aed.
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The Jast Corollary is a special case of a general theorem which
follows easily from Theorem 17 of [16] and which asserts that if a space X
is a retract of D" for some n, then it is also a retract of every containing
it m-Cantor set D™.
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