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TWO CLASSES OF MEASURES
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This paper* is concerned with two classes of measures: perfect meas-
ures (= quasi-compact measures of Ryll-Nardzewski [13]) and semicom-
pact measures (= compact measures of Marczewski [7]).

These two classes are related to two constructions in probability
theory: (indirect) product and disintegration. As long as we insist that
probabilities be countably additive, it is inconvenient to allow arbitrary
countably additive measures as probabilities; the reason is that the set
functions produced as products and disintegrations of countably additive
measures need not be countably additive, while intuitively they should
be probabilities. The results surveyed in this paper suggest that the most
natural property to start with is perfectness when constructing products,
and semicompactness when constructing disintegrations.

Our characterization of semicompact measures in terms of disintegra-
tions allows us to show that these measures have reasonable stability
properties.

1. Preliminaries. A measurable space is a pair (X, &), where X
is a nonempty set and < is a o-algebra of subsets of X; if 4 is a measure
(that is, a nonnegative finite countably additive set function) on «f,
then we say that (X, &, u) is a measure space. When & is a class of subsets
of a fixed set, denote by a(¥) and o(%) the algebra and the o-algebra
generated by £. A lattice on X is a class of subsets of X that contains
@ and X and is closed under finite unions and finite intersections.

A class o of sets is semicompact if every countable class Xy =
such that ()’ = @ contains a finite class # o = X, such that (M) 4= G.

A “regular” measure will mean “inner regular”: If (X, o, u) is
a measure space and ¢ < o, then u is regular with respect to ., or
X -regular, when

ulB =sup{uK|E > KexX} foreach Fe «.
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A measure is called semicompact when it is regular with respect to
a semicompact lattice. Semicompact measures are called compact by
Marczewski [7] (his definition is slightly different, but equivalent in
view of 4 (iv) in [7]).

For a real-valued function g on a class ¢ of subsets of X, the inner
measure B, is defined by

frE =sup{fK|E> KeXX} for Ec X.

If (X, o, p) is a measure space and Z < X, then we denote by & |Z
the c-algebra {F N Z|FE € of}; the measure x|Z on «/|Z is defined by

(212)@ = inf {(uE|E € o and G = EnZ}.

The set Z is called u-thick when u,(X\Z) = 0; an equivalent condi-
tion is that ¢[u|Z] = u, where i: Z — X is the inclusion map.

Given two measure spaces (X, <, u) and (Y, %, »), we denote by
o ® & the set of “rectangles” ' X F with € of and F € #. Thus a(o ® &)
is the product algebra on X x Y, i.e. the smallest algebra on X X ¥ making
both projections prx: X x ¥ — X and pry: X X ¥Y— Y measurable. A non-
negative finite finitely additive set function 1 on a(« ® #) is a subproduct
of 4 and » when prx[4] < x and pry[4] < ». A subproduct 4 of x and »
is a product of u and v when pryx[A] = u and pry[i] = ». (In Section 3
we adapt this notion to infinite products: a product of infinitely many
measures is a nonnegative finite finitely additive set function on the
product algebra whose projections coincide with the given measures.)

ProposITION 1 ([8], 1 (i)). If u is semicompact and v i8 an arbitrary
measure, then every product of u and v ts countadbly additive.

From this result it is easy to deduce that even every subproduct
is then countably additive.

LEMMA. Let (X, o, u) and (Y, B, v) be two measure spaces, u being
given by the sum of a sequence of measures u,; that is

ull = Zy,,E for each E € .

n=1

If 2 is a countably additive subproduct of u and », then for every n there
18 a countably additive subproduct A, of pu, and v such that

G = D 1,G for each G € a(f QDRB).

n=1

Proof. Each u, is u-absolutely continuous; take an «/-measurable
function h, with g, = [h,du. Put A, = [(h, prx)dai.
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2. Disintegration and semicompactness. Let (X, o/, u) and (Y, &, »)
be two measure spaces and let A be a subproduct of 4 and ». A y-disin-
tegration of A is a family {(«f,, #,)},.r such that:

(a) o, is a o-algebra on X and u, is a measure on &, with x4, X <1
for each ye Y;

(b) for each E e of there is a set @ € # such that »Q =0, Fe o,
for all y ¢ Y\@ and the function y —u, H, ye Y\Q, i8 (#|¥Y\Q)-meas-
urable;

(c) if e o and F e #, then

[ u,Biv(y) = A(E x F)
F

(in view of (b) the integral is well defined).
Note that if there exists a »-disintegration of 1, then A is countably
additive.

THEOREM 1. A measure space (X, o, u) i3 semicompact if and only
if for every complete measure space (¥, B, v) and for every countably additive
subproduct A of u and v there exists a v-disintegration of A.

Proof. “If” follows from [12], 2.2. To prove the “only if” part,
we repeat the proof of 3.5 in [12]:

Choose a lifting ¢ on (Y, #,»). By the Radon-Nikodym theorem,
for each F € o there is a bounded #-measurable function hz such that

[ hgdv = A(BxF) for every Fe 4.
F

Take a semicompact lattice o such that u is J'-regular and for
every y € ¥ define a function 8, on 4" by ,K = ohg(y), K e X

From the properties of lifting it follows that B, is monotone and
modular and §,X < 1. Apply 3.4 in [12] to obtain a monotone modular
function y, on ¢ such that y,> 8, y,X = f,X and

7K+ (7,)s(X\K) = p,X | for every Ke X .
Define o, as the class of the sets B < X satisfying

(Yu)tE+ (yy)# (X\E) = 7uX

and for F e o, put u, B = (y,). B.

COROLLARIES. 1. The restriction of a semicompact measure to a sub-
-g-algebra 18 semicompact (cf. [12]).

2. Let (X, o, u) be a measure space and suppose that there ewists
& u-thick set Z < X such that u|Z is semicompact. Then u i8 semicompact
(cf. [11]).
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3. Let {u,}3_, be a sequence of semicompact measures on a measurable

space (X, o) with

j‘p,,x< oo,

Ne=]

Then the measure p = D u, 18 semicompact.

4. Let {u,}o, be a sequence of semicompact measures. Then there
i3 a semicompact lattice A" such that each u, is ot -regular.

b. If M i8 a weakly compact set of semicompact measures, then there
i a semicompact lattice X" such that each ue M is X '-regular.

Proof. 1. See [12], 4.1.

2. Apply Corollary 1 to the o-algebra o(«/U{Z}) and its sub-o-alge-
bra «.

3. This follows from Theorem 1 and the Lemma if we write 4
= >'A, as in the Lemma, take a »-disintegration of each 4, and sum
these to get a »-disintegration of A.

4. Assume that u,X > 0 for each n and apply Corollary 3 to u,
= (llznﬂnx)”n'

6. If M is weakly compact, then ([2], IV.9) there is a sequence
{#p}o, in M and real numbers 7, such that

00

2 Tptig X < 00

fNe=]

0o
and every u € M is absolutely continuous with respect to > z,u,. Thus
the result follows from Corollary 3. ne=1

THEOREM 2. Let (X, /) and (Y, ®) be two measurable spaces and
let f: X - Y be a measurable map. If u 18 a semicompact measure on sf,
then the image measure f[u] is semicompact.

Proof. Combine Corollaries 1 and 2.

PROPOSITION 2. |Every measure [u can be (uniquely) written as p
= Uyt thoy Where p, i8 a semicompact measure and u, dominaies no nonzero
semicompact measure.

Proof is standard (cf. [2], II1.7.8). Put namely
7 = sup{pX |4 < p and i is semicompact}
and choose a sequence of semicompact measures u, < u such that

limy, X = 7.
n

If i and i are ‘two semicompact measures, then Fvi < i+ i is
semicompact by Corollary 3. Thus we may assume that u, < s <...}
this being the case, u, = limu, has the desired properties.

n



TWO CLASSES OF MEASURES 335

Two basic examples of semicompact measures are a Radon Borel
measure (or its completion) and a 2-valued (or, more generally, atomic)
measure. Other semicompact measures can be produced by passing to
a measurable image (Theorem 2) or product [7]. Notice that, in par-
ticular, the restriction of a Radon Borel measure to the Baire o-algebra
is semicompact.

The results in Corollaries 4 and 5 suggest the following question:
does there exist a set of semicompact measures which are not all regular
with respect to a common semicompact lattice? (P 1147)

We prove in Theorem 4 below that if o is the Borel o-algebra in
a metric 2D-space, then all semicompact measures on «f are regular
with respect to a single lattice, namely the lattice of compact sets. This
phenomenon is caused by the peculiar structure of the Borel g-algebra
in a metric space, and can hardly be expected to hold true in general.
However, no counterexample is known to the author.

3. Perfect measures. Recall that a measure is called perfect if it
has one of the equivalent properties in the following theorem:

THEOREM 3. The following properties of a measure space (X, o, u)
are equivaleni:

(a) if f: X - R is a Borel-measurable real-valued function and H < R,
fH e o, then there is a Borel set B < R such that B< H and u(f~'H)
= u(f~'B);

(b) if f: X - R i8 a Borel-measurable real-valued function, then there
i8 a Borel set B < R such that B < fX and u(f~'B) = uX;

(c)ife>0and E e o, n =1,2,..., then there i3 a set H € of such
that uE > puX —¢ and the class {E,NnE|n =1,2,...} i8 semicompact;

(d) the restriction of u to any countably generated sub-o-algebra of o
18 semicompact;

(e) if f: X - & i8 a Borel-measurable map into a separable metric
space &, then the image measure f[u] i3 Radon (i.e. reqular with respect
to the class of compact subsets of &).

Proof and further properties of perfect measures may be found in
[13] and [14]). Here we only recall two results:

1. Every semicompact measure t8 perfect ([13], Theorem II).

There exists a perfect measure that is not semicompact. The first
example is in [17]; a more detailed account is given in [10].

2. Any product of an arbitrary family of perfect measures i8 countably
additive and its countably additive extension to the product o-algebra is
perfect ([13], Theorem VIII).

This together with the forthcoming Proposition 3 suggests that perfect
measures provide a natural environment for countably additive produects.
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The next proposition makes explicit two more characterizations
of perfectness which are implicitly contained in [8].

PrOPOSITION 3. Let (X, o, u) be a measure space. The following
properties are equivalent:

(a) u is perfect;

(b) any product of u with any measure is countably additive;

(c) of (X, B,v) i3 a measure space and A i3 a measure on o( A Q@ B)
such that prx[A] = u and pry[A] = v (that is, the restriction of A to a( A @ B)
18 a product of u and v), then

‘(XX F) =v.F) for every set F< Y.

Proof. By Proposition 1, (b) holds for every semicompact measure u.
However, it is clear that u satisfies (b) whenever the restriction of u
to every countably generated sub-g-algebra of <f satisfies (b). Thus Pro-
position 1 and condition (d) in Theorem 3 show that (a) implies (b).

We are going to show that non(e¢) implies non(b). Assume that there
8 a space (Y, 4, ») and a measure 4 on ¢( & ® #) such that prx[1] = 4,
pPry(A] =v» and A, (X X Fy) > v, F, for some F,< Y. Pick an F,e X
such that F', < F, and »F, =»,F, Put

Y =Y\(F\F,), #=2%Y and »=»7%.

Define a product i of u and » as follows: when @ € a( o/ ®9§), choose
a Gea(osd @A) such that @ = @N(X x ¥) and put i@ = AQ. Since ¥
is »-thick, 1 is well defined. It remains to be shown that i is not countably
additive. The measure 1 on o( &/ ® %) is regular with respect to (a(« ® #)),.
Therefore there is a set @ € (a( .« @ #)), such that @ = X x F,and AG > »,F,.
Write

G\N(XxPF) =G, where G, ca(fQ®B)and G;>G;>...

n=1
Put
G, =G.nNn(XxY).

We have G,\@, but
i@, =14, G- A(X X F,) = AG—»,F,> 0.

Thus 1 is not countably additive.
Finally, let us prove that non(a) implies non(c). Assuming that u
is not perfect, we find a Borel measurable function f: X — R such that

sup{u(f~'B)|B is a Borel set and B < fX} < uX.

Denote by # the Borel o¢-algebra in R and put +F = u(f~'F) for
Feax.



TWO CLASSES OF MEASURES 3317

Define a measure A on o(«¥ @ #) by

G =ploeX|(r,fx) eG) for Geo(ARR).
Obviously, prx[i] = u, pry[A] = » and

ve(fX) = sup{u(f~'B)|B is Borel and B < fX}.
On the other hand,

Ao (X X fX) = uX,
because {(z,f(2))|# € X} e o(F Q%) (see [1], 2.1), and
Mz, f(x))|v e X} = uX.

The proof is complete.

The following example shows that property (b) in Proposition 3
cannot be replaced by the weaker property “any product of x4 with u
is countably additive”. In fact, we construct a measure ux such that every
product of an arbitrary family of measures which are isomorphic with
p is countably additive, and yet u is not perfect.

Example. Denote by # the Borel o-algebra in [0,1] and by »
the Lebesgue measure on #. Let 2 be the first ordinal of cardinality 2%,
and let D,,D,,...,D,,..., n< £, be all the Borel subsets of [0,1]Y
whose images under the canonical projections [0,1]Y — [0,1] are un-
countable (these images are analytic sets, hence they are either countable
or of cardinality 2% ([6], §39.I)). Similarly, let F,, Fy, ..., F,, ..., 7 <,
be all uncountable Borel subsets of [0,1]. Choose v, € F,, w, € F;, and
y™e[0,1],n =1,2,..., such that w, # v,, H},v €D, and ¥y # v,
forn =1,2,...

By transfinite induction construct v,, w, and ™, n=1,2,...,
n < 2, such that for each n< 2 we have

'vn’ wr) € Fr)’ {y(nn)}neN € D,,,

v, ¢ {w,| &< NuPMléE<ng,n=1,2,..}
and
YW, w, ¢ {0, £ < 7}
Put
X = {w,|n< -Q}U{yﬁ,"’ln< Q,n=1,2,..}
o =B X, u=rX.

The set X intersects every uncountable Borel subset of [0, 1], hence
X is »-thick. For the same reason the set [0,1]\X o {v,|n < Q} is
v-thick, hence X is not v-measurable. Thus x is not perfect.

2 — Colloquium Mathematicum XLII



338 _ J. K. PACHL

In order to prove that an arbitrary product of any (finite or infinite,
countable or uncountable) number of copies of x4 is countably additive,
it is enough to prove that any product of an infinite countable family of
copies of u is countably additive.

Thus let &= a(® %) be the product algebra in [0, 1N and €= a( @A)
the product algebra in X~. Obviously & = &|X™. Let i on & be a product
of w's. Put 'AE = J(EnXP) for E e &. This 4 is a product of »s, hence
countably additive by the result ([13], Theorem VIII) mentioned above.

Suppose that B, eé’ n=1,2,...., 8, > 8,> ... andthE > 0. Find
sets E, e & such that B, = E,,nXN and B, > E,> ... " We have

limAE, = limik, > 0
n n

and A is countably additive; this implies that all the canonical projections
in [0,1] of the Borel set ﬂE are uncountable. Thus ﬂE = D, for
some 7 < 2 and

{y‘nn)}neNe ﬂ EnnXN = n En‘
n n

We conclude that 1 is countably additive.

4. Measures in metric spaces. In this section we extend Sazonov’s
theorem ([14], Corollary 2 to Theorem 11) to a large class of metric spaces,
called 2D-spaces below. The assumption that every metric space is a 2D-
-space is consistent with the usual axioms of set theory.

When Z is a set, we denote by expZ the o-algebra of all subsets
of Z; a measure u on expZ is called nontrivial if u({z}) = 0 for each
z€Zand uZ = 1. A cardinal m is real-measurable if for a set Z of cardinality
m there exists a nontrivial measure on the o-algebra expZ; if, in
addition, 4 assumes only two values (0 and 1), then m is called 2-measurable.
Thus every 2-measurable cardinal is real-measurable. (Sometimes, non-
real-measurable cardinals are called cardinals of measure zero [5]
and 2-measurable cardinals just measurable [3].) A detailed discussion
of the two notions may be found in [15].

A metric space X will be called a D-space [6] (resp. a 2D-space) if no
closed discrete subspace of X has real-measurable (resp. 2-measurable)
cardinal.

The forthcoming Theorem 4 strengthens Corollary 2 to Theorem 11
in [14]; to prove it, we combine Sazonov’s method with a trick due to
Ulam [16].

PROPOSITION 4. If the cardinal of a set Z is mot 2-measurable, then
there i8 mo monirivial perfect measure on expZ.

Proof. Let 4 be a nontrivial measure on expZ. Since card Z is not
2-measurable, the atomic part of u is zero. Thus x is nonatomic and we
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can find a map f: Z — [0, 1] such that the image measure f[x] on exp[0, 1]
extends the Lebesgue measure. Now pick an H < [0, 1] with inner Lebes-
gue measure zero and outer Lebesgue measure one. We cannot have
simultaneously u4(f~'H) =0 and x(f~*([0,1]\H)) = 0. Hence H or
[0, 1]\H does not fulfill (a) in Theorem 3. Thus ux is not perfect.

THEOREM 4 (1). Let u be a measure on the Borel o-algebra im a metrio
2D-space. The following conditions are equivalent:

(a) u i8 a Radon measure (i.e. u i8 reqular with respect to the class
of compact sets);

(b) u i8 semicompact;

(e) u is perfect.

Proof. The implication (a) = (b) is trivial and (b) = (¢) holds always
(see p. 335). To prove (c¢) = (a), proceed as in [14]: use a o-discrete
basgis in X and Proposition 4 to show that x is supported by a separable
subset, and apply condition (e) in Theorem 3.

5. Existence of disintegrations and strong measure-compactness.
Let X be a metric space and & its Borel ¢-algebra. Assume that (X, &)
has the following property:

(*) If y is a measure on &, (Y, #, ») is a complete measure space
and 4 is a product of z and », then there is a »-disintegration {(<,, u,)} er
of 2 such that &, > & for each yeY.

Does it follow that every measure on < is Radon? (The spaces in
which every Baire measure is Radon are called strongly measure-compact
[9].) Goldman ([4], Theorem 4.7) shows that this is the case where X is
separable. The answer for general (metric) X depends on the existence
of measurable cardinals in the following way:

PRrROPOSITION 6. (a) If X 48 a metric 2D-space salisfying (=), then
every measure on < i8 Radon.

(b) If the cardinal 2% is real-measurable and X is an arbitrary metric
space satisfying (*), then every measure on < is Radon.

Proof. (a) follows from Theorems 1 and 4.

(b) follows from (a) and from the following fact: if 2% is real-measur-
able and X satisfies (*), then X is a D-space (and hence also 2D-space).
Indeed, assume that X contains a discrete closed subset Z of cardinality
2% and that there is a nontrivial measure » on expZ. Since 2% is not 2-meas-
urable ([3], 12.5), the measure x4 on & defined by uF = »(EnZ),Ee A,
is not semicompact by Proposition 4. Hence, by Theorem 1, X does not

satisfy (=).

(*) Note edded in ricof. This iLeorcm has teen obtained aleo by G. Koumoullis
(On peaifect measures, Notices of the American Mathematical Society 26 (1979), p.
A-274). A eticnger reeult bas been proved by A. Goldman and M. Talagrand (Pro-
Ppriétés de Radem-Nikcdym pour les cbnes positifs de mesures, to appear).
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The cardinal assumptions in Proposition 5 cannot be omitted in

view of the following

Remark. Assume that 2% is not real-measurable and there exists

a 2-measurable cardinal. Take a discrete space X of 2-measurable cardi-
nality. There exists a (2-valued) measure in X which is not Radon; never-
theless, X satisfies (*) because any Borel measure in X is atomiec.
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