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ON SOME WEAKLY SUPERNILPOTENT RADICALS OF RINGS

BY

FERENC A. SZASZ (BUDAPEST)

All rings considered here are associative. For the fundamental notions
used in this paper we refer to Jacobson [9]. In particular, notions concern-
ing radicals can be found in the books by Divinsky [6], by Gray [8],
and by the author [15].

The author’s paper [21] explicitly determines the class C, of all
rings, every additive subgroup of which is multiplicatively idempotent.
Satz 1 of the author’s paper [18] solves a problem orally raised by
R. Wiegandt and shows the existence of a non-trivial homomorphically
closed semisimple class C, of rings. Then the inclusion €, S C; holds.
On the other side, independently of [18], Stewart [11] has determined
all non-trivial semisimple radical classes C;, and it is interesting that
the equality C, = C; holds. The author [20] characterizes this class
C, (= C4) by five further equivalent conditions.

The upper radical UC,, determined by C,, is supernilpotent, which
also is “very strong” radical in the sense that in any ring A the radical
UC,(A) contains every UC,-radical subring of A (cf. Wiegandt [24]).
Let us mention that generalizations called “strong” radicals of “very
strong” radicals were discussed before in the fundamental joint paper
of Divinsky, Krempa and Suliiski [7].

It is the purpose of this note to discuss some weakly supernilpotent

radicals and, in particular, to find lower bounds and upper bounds for
them.

Definition 1. A ring A is called a generalized Jacobson radical ring,
shortly a GF-ring, if A(1—a)+(1—a)4d = A holds for every element
aecA.

PRrOPOSITION 2. Every Jacobson radical ring 18 a GF-ring and every
commutative GF-ring is a Jacobson ring. The class of all GF-rings 18 homo-
morphically closed.
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Proof is trivial.

PROPOSITION 3. Let A be a GF-ring and I, , the two-sided ideal of A
generated by the differences ab—b and ba—b, where a and b are arbitrary
fized elements of A, i.e.

I,, = (ab—0b,ba—D).

Then 1, , contains the bi-ideal bAb of A.

We remark that bi-ideals are discussed in papers [10] and [22].
Generalized bi-ideals of rings are investigated in paper [23].

Proof. In the factor ring 4 = A4/I,, we obviously have 5 = ab = ba,
where ¥ = 2 +1,, for zeA. By Proposition 2, also 4 is a GF-ring. Hence
we have
(*) A—a)d+A(1—a) = 4.

Now multiplying (*) from left and right by b, we get 645 = 0, because
the equations b(1—a) = (1—a)b = 0 hold true. This implies bAb < I,,,
which completes the proof.

COROLLARY 4. Under the mnotations of Proposition 3, the inclusions
(bA)? = I,,, (Ab)® = 1,, and b3el,, hold.

The proof follows from the inclusion (bA4)%+(Ab)? < I,, and from
the fact that b3ebAb.

COROLLARY 5. A GF-ring does not contain non-zero idempotent elements.

Proof. Let us assume that ¢2 = ¢ in a GF-ring. Then, by defi-
nition of I,,, we obviously have I, , = 0 and Corollary 4 implies ¢* = 0,
thus ¢ = 0.

Definition 6. A ring is called Zorn ring or an I-ring if every its
non-nil ideal contains a non-zero idempotent element.

COROLLARY 7. Every Zorn GF-ring is nil.

COROLLARY 8. Every GF-ring with minimum condition on principal
right ideals 18 a mil ring.

Proof follows from Corollary 7 and from paper [16].

THEOREM 9. Let LGF be the lower radical class determined by tihe
class of all GF-rings. Let F and Be denote the class of all Jacobson radical
rings and that of all Behrens radical rings (cf. [4] and [6]), respectively.

Then
F < LGF < Be.

Proof. F < LGF immediately follows from Proposition 2 and from
Chapter I of paper [6]. Furthermore, Be is by definition the upper radical
determined by the special class (see Andrunakevié’s [2] results in Chapter
VII of Divinsky [6]) of all subdirectly irreducible rings having a non-
-zero idempotent element in their hearts, where heart is the non-zero in-
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tersection of all non-zero two-sided ideals. Consequently, Be coincides
with the F-regular radical of Brown and McCoy [4], where we choose
F(a) = (a®*—a), and F-regularity of a is defined by aeF(a). Therefore,
an application of Corollary 4 yields LGF < Be since a GF-ring cannot
be mapped homomorphically onto an e-primitive ring of Gray [8].

ProBLEM 10. Is LGF supernilpotent? (P 839)

Remark 11. The definition of the e-primitivity of a ring, on p. 106
of [8], is incorrectly formulated: “A ring R is e-primitive if every non-
zero ideal in R contains a non-zero idempotent clement”. Correct defi-
nition reads e.g. as follows: A ring is e-primitive if there exists a non-
zero idempotent element, which is contained in every non-zero ideal.
Under Gray’s original definition, the second assertion in her Theorem 26,
p. 106 of [8)], would be false, since the semisimple but non-primitive
rings with minimum condition on principal right ideals (e.g. the direct
sum of two division rings) obey her original definition, but they do not
satisfy the second assertion of her Theorem 26. On the other hand, a ring

«is e-primitive if and only if it is a Behrens semisimple [4] subdirectly
irreducible ring.

COROLLARY 12. Every GF-ring, as well as every LGF-ring, is a Brown-
McCoy radical ring [5].

Remark 13. An important and deep theory has been developed
for the Brown-McCoy radical, for the Brown-McCoy semisimple rings,
and for the strongly Brown-McCoy semisimple rings of Sulinski (see [12]-
[14]). In [17] we investigated some surprising properties by Brown-McCoy
radical rings A4 which satisfy the following condition: a submodule N
of every A-right module M which is maximal in M with respect to the
property NA = 0, always is a direct summand of M, i.e. M = NOK
holds with a submodule K of M.

Definition 14. The subring I(S) of a ring which is maximal for the
property that it contains the subring 8 as a two-sided ideal is called the
idealizer of 8.

COROLLARY 15. Let 8 be a subring which is maximal among all LGF-
-radical subrings of an arbitrary ring A. Then the idealizer I (I (8)) of the
idealizer 1(8) coincides with I(8), i.e. I(I(8)) = I(S) holds.

The proof follows from the elementary fact that every nilpotent
ring is an LGF-ring and from a theorem of [19].

Our [19] another theorem uses the notion of right T-nilpotent and
left T-nilpotent rings. These rings were also discussed in [16].

Definition 16. A ring A is said to be right (left) T-nilpotent if for
every countably infinite subsets of eiements a,, a,, ... of A there exists 0
in the sequence of the products a,a, ... a; (or a;a,_, ... a,a,). A is two-sided
T-nilpotent if it is right T-nilpotent as well as left T-nilpotent.
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By our paper [16], the Jacobson radical of every ring with minimum
condition for principal right ideals is right 7-nilpotent.

ProposIiTION 17. (1) A ring A is T-nilpotent (or right T-nilpotent
or left T-nilpotent, respectively) if there exists an ideal I such that both I
and A[I are T-nilpotent (or right T-nilpotent or left T-nilpotent, respec-
tively).

(2) Every nilpotent ring vs T-nilpotent.

(3) Every homomorphic image of a right T-nilpotent ring is a right
T-nilpotent.

Proof. (1) The necessity of the condition being trivial, we show only
its sufficiency. Let I and A4 /I be e.g. right T-nilpotents. Then, for every
-S€qQUeNCe Ly, Ly ...y Ty ... 0f 4, Y = 0,2, ... 2, belongs to I for a suit-
able index m, since A/I is right T-nilpotent. Furthermore, the product
Y2 = T 41%m 42 «+» Tm, 8ls0 belongs to I for an index m, etc. But I
is also right T-nilpotent, so that

Y1iY2 oo Yp = $1%g oo Ty, = 0

holds for a suitable k. Thus A itself is a right 7T-nilpotent.
(2) Every nilpotent ring is trivially 7-nilpotent.
(3) The last assertion is also evident.
PROPOSITION 18. (1) The sum of two right (left or two-sided) T-nilpotent

ideals is of the same type.
(2) The sum of all right T-nilpotent ideals (of all T-nilpotent ideals)

18 a nil ideal of the ring.
Proof. (1) Assume that I, and I, are right T-nilpotent ideals. By
the first isomorphism theorem,

I, +1,/I, = I,/[I,NnI,.

Now, I,/I,Nn1, is, by assertion (3) of Proposition 17, right T-nilpotent.
Thus I,+1,/I, and I, are, at the same time, right T-nilpotent, hence
assertion (1) of Proposition 18 follows from assertion (1) of Proposition 17.

(2) Let I be an arbitrary right 7-nilpotent ideal of A and xzeI be an
arbitrary element. Then z, 22, z3, ..., 2™, ... is an w-sequence. Consequently,
for the sequence of products p; = zx2®... 2 we obviously have p;=0
for a suitable j, I being right T-nilpotent. This yields

#¥ =0 with k=14+2+...+j =l(—32+—1).

Therefore I is a nil ideal and thus also the sum of all right 7-nilpotent

ideals is a nil ideal, which completes the proof of assertion (2) as well.

Remark 19. The sum of all right 7-nilpotent ideals of a ring is,
generally, not right 7-nilpotent, as example 3 of Divinsky [6], p. 19,
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shows. Namely, if x, is an arbitrary basis element of the algebra A4, then
the ideal (z,) is nilpotent, consequently also T-nilpotent, but their sum 4
is not T-nilpotent because

Xy ®y)yTyg -+ - Typop =0 for every n.

TEEOREM 20. Let LT (or LT, or LT,) be the lower radical class, de-
termined by the class of all T-nilpotent (or right T-nilpotent or all left T-nil-
potent, respectively) rings. Then B LT < LT, < Uand B LT < LT, < U
hold, where B is Baer’s lower nil radical and U is Baer’s upper nil radical.

The proof follows immediately from assertion (2) of Proposition 17
and from assertion (2) of Proposition 18.

COROLLARY 21. A ring with minimum condition on principal right
ideals is LT ,-radical if it is a Jacobson radical ring, or if it is a nil ring.

PROPOSITION 22. The weakly supernilpotent radicals LT, LT, and LT,
are supernilpotent.

The proof follows from [3] and from the elementary facts that the
classes T, T, and T, are hereditary.

ProBLEM 23. Are LT, LT, and LT, also special radicals? (P 860)

COROLLARY 24. (1) The <idealizer I(8) of every T-nilpotent proper
subring 8 of A is properly larger than S.

(2) If the subring 8 is maximal among all LT- (or all LT,- or all LT}-)
subrings of A, then I(I(8)) = I(8) holds.

The proof follows from [19].

ProBLEM 25. Is LT, = LT, true? (P 861)

PrROBLEM 26. Is every T-nilpotent (or right T-nilpotent) right ideal
of a ring contained in a T-nilpotent (or right T-nilpotent) two-sided ideal?
(P 862)

The following assertion can be considered as well known (cf. [9])
but because of its importance we insert it with one of its proofs:

PROPOSITION 27. In an arbitrary ring A the sum N, of all nil right
ideals coincides with the sum N, of all nil left ideals of A.

Proof. Let R be a nil right ideal of A and reR. Then for every ele-
ment xe¢A there exists an exponent n = n(x) such that (rz)" = 0 holds.
Thus we have also (zr)"*! = 0 and the inclusion (r)} = 4,, for the prin-
cipal left ideal (r), generated by r in A, implies that (r)] and (r); are nil
left ideals of A. But reR is chosen in an arbitrary way and, consequently,
N, = N,. Similarly, also ¥; < N, can be shown, which implies N, = N,.

Definition 28. We denote in the sequel the two-sided ideal N, = N,
by N. Furthermore, let LN be the lower radical class determined by the
class of all rings A for which ¥ = A.
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Remark 29. The elements of N need not be nilpotent. G. Koethe’s
famous problem on the possibility of -embedding nil right ideals into
nil ideals being yet unsolved, but N = N, = N; obviously contains
the upper nil radical U.

THEOREM 30. We have U < LN < F for the Jacobson radical F.

Proof. U< N implies U < LN and N < F implies LN < F.

PRrOPOSITION 31. LN is supernilpotent.

The proof follows from the hereditariness and the fact that U < LN.

PrOBLEM 32. Is LN a special radical? (P 863)

PRroOPOSITION 33. The idealizer 1 (I (S)) of the idealizer I(S) of every
maximal LN -radical proper subring coincides with I(S).

The proof follows from [19].

PROPOSITION 34. On the class of all rings with minimum condition
on principal right ideals LN coincides with the Jacobson radical F.

The proof follows from [16].

Definition 35. An ideal I of a ring is called transfinitely nilpotent
if there exists an (infinite) ordinal number y such that I* = 0. Here
I°I = I**', and for a limit ordinal number 8 let I’ be Y'I° for all a < 8.

Remark 36. The Jacobson radical of a ring with minimum con-
dition on principal right ideals yields an instance of a transfinitely nil-
potent ideal (see [16]).

Definition 37. Let LTR be the lower radical class determined by
the class TR of all transfinitely nilpotent rings.

THEOREM 38. B< LTR < AS holds, where AS 1is the antisimple
radical of Andrunakevié [1], and LTR is supernilpotent.

The proof is almost trivial and we omit it.

ProBLEM 39. Is LTR a special radical ? (P 864)

PROPOSITION 40. The idealizer I1(I(8)) of the idealizer I1(8) of every
maximal LT R-radical proper subring S coincides with I(8).

The proof follows from [19].
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