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Introduction. The l-polydisc D, considered as a product of / hyperbolic
discs D;, carries a product Riemannian structure and associated Laplace-
Beltrami operator L, which is the sum of the hyperbolic Laplacians on each
of the unit discs D;. In this article it is shown that the closure D of D
in C' is the Martin compactification of D relative to the potential theory
associated with the operator L + lId, where —! is the bottom of the positive
spectrum of L, i.e. the smallest number A for which the equation Lf = A f
has a positive global solution.

Note that the Martin compactification associated with L remains to be
made explicit (the general determination was announced by Ol’shanetskii
[12]), even though by the work of Karpelevich [6] (cf. Guivarc’h [4]) all the
minimal functions are known and the way in which the corresponding ideal
points are attached to D is also known. These minimal functions are all
associated with points of the distinguished boundary T of D, with many
minimal points associated to one point of T.

For the Martin compactification associated with the bottom of the posi-
tive spectrum, the minimal points are in one-to-one correspondence with the
points of T and the corresponding minimal functions are the square roots
of the products of the Poisson kernels in the individual discs. The rest of
the topological boundary consists of non-minimal points.

The polydisc D is a bounded symmetric domain and its closure is also
a so-called Satake compactification (in fact the maximal one). Satake [13]
defined compactifications of symmeetric spaces of non-compact type by em-
bedding them in a suitable projective space and taking the closure. These
compactifications were also studied by Moore [11] using ideas of Furstenberg

[3].
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It is clear that the methods used in this article carry over to describe
the corresponding Martin compactification for the general symmetric space
of non-compact type once they are expressed using Lie algebras and root
systems. In a subsequent article, the relation will be discussed between
the Martin compactification at the bottom of the positive spectrum for a
symmetric space of non-compact type and Satake compactifications.

1. Description of the boundary of the polydisc. Let D =
D) x ... x D, denote the I-polydisc, where each D; is the unit disc. Let D
denote its closure in C'. The topological boundary 3D is the disjoint union
of the following sets, where E runs over the proper subsets of {1,...,1}:
for each subset E let Dg X Tg: denote those points W = (wy,...,w;) € D
such that |w;| < 1 & ¢ € E. Let such a point be denoted by (w,b)—i.e.
w = (wi,...,w;,)if E={i{; <...< i} and b = (wj,...,w;, ) where the
complement E' of E is {j; <...< jm}and I = k+m.

DEFINITION 1.1. Let E be a proper subset of {1,...,n}. A sequence
(Wa)n>o of points w,, = (wy(n),...,wy(n)) in D will be said to be E-
bounded if '

(1) i € E = |wi(n)] < r; < 1 for all n;

(2)j € E'=> |wj(n)] = 1as n — oo.
If in addition, i € £ = |w;(n)| = 0 for all n, then the sequence will be said
to be E-canonical.

It is clear that a boundary point of D is in Dg x Tg if and only if it is
the limit of an E-bounded sequence in D.

2. Potential theory on the polydisc. Let each unit disc be equipped
with the Poincaré metric |ds|? = (1—|z|%)~?|dz|?, i.e. each unit disc is to be
viewed as a hyperbolic disc. It is very well known (cf. [5]) that the hyperbolic

disc can be viewed as SU(1,1)/SU(1), where the action of g = | 2 g on

B
zisgiven by g-2 = %:—;tg, and SU(1) is the subgroup of matrices for which
B = 0. This subgroup is isomorphic to 88(2) and also acts on the boundary

. : i8/2
of the unit disc sending b = ' to k- b = ei(o+9) jf k = | © 0 6-90/2 .

The unit disc may be conformally transformed onto the upper half plane
H by the map z — w = y(2) = i{£2. Conjugating the subgroup SU(1,1)
of SL(2,C)—the 2 x 2 complex matrices of determinant one—with go =

[_z 1 ;] shows that SL(2,R) acts on H in the same way as fractional lin-

ear transformations. Let A be the subgroup of SL(2,R) of matrices a; =
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. .
[% egt] , and let N be the subgroup of SL(2, R) of matrices 7, = [(1) T]

Then if w = u+iv, we have @; - w = e?'w and A, -w = u+i(v+z). The set
S = NAisagroup as fiza; = G4_¢gds = G¢Me-215,and H = §-i = §-7(o).

Let A and N be the subgroups of SU(1,1) that correspond to Aand N
under the conjugation by g;! with corresponding elements a; and n,. Then
S=NAisagroupand D =S5-0= NA-o. Note that a function f on D
is N-invariant if and only if it is of the form f(2) = f(na:-0) = F(v) =
F(e?) = p(2), u + iv = w = 7(2).

Remark 2.1. The conjugation formula a_;n;a; = n.-2; implies that,
for any n € N, a_yna; — e ast — oo.

Note also that D = KA -0, K = SU(1), where the K-component in this
polar decomposition is unique if the A-component is a;, t > 0.

The Laplace-Beltrami operator for the hyperbolic disc is Lf(z) = (1 —
|2]2)2Af(z), where A denotes the euclidean Laplacian. It is well known that
there are positive solutions to the equation Lf = Af if and only if A > —1.
This is a consequence of Lemma 4.1 and Theorem 4.3 in the Introduction of
[5]. This number is the bottom of the positive spectrum for the hyperbolic
disc. Note that by Proposition 1.2 of [8], L + Id has a Green function.

The Poisson kernel Py(z) = ]1.&:_%}; is harmonic relative to L and its
powers PP satisfy Lf = 48(8 — 1)f (cf. [7]). If B = a + 1/2, with a > 0,
then Pf is a minimal solution of Lf = 48(8 — 1)f and every minimal
solution has this form (cf. Theorem 4.3 in the Introduction of [5] and also

[9], Proposition 3.2, for a simple proof based on the asymptotics of the Green
function).

As a result, there is a unique positive SU(1)-invariant—i.e. rotation
invariant—solution ¢y of the equation Lf = — f such that ¢o(0) = 1. It is

2
1 1-|z|?
¢0(Z) - o'r 6f Ie,'o _ Z|2 da'

PROPOSITION 2.2. ¢po(2z) = 1 implies z = o.

Proof. The Cauchy-Schwarz inequality implies that
A p 2r 1/2
—_ i < |— i = = .
o of VP.is(z)db < [% !Peo(z)do] 1 = ¢o(0)

Further, equality holds if and only if the function § — /P,.s(z) is constant,
le.2=o0.
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Under the transformation v, the Laplacian transforms to 4v2A, and so
if f is an N-invariant function on D, and f(2) = f(na; - o) = ¥(t) = e*p(t),
it follows that

(*) Lf(na; - 0) = e {¢"(t) — (1)} .
This has the following important consequence:

PROPOSITION 2.3. Let h be a positive function on D such that

(1) h is N-invariant;
(2) h(o) = 1; and
(3) Lh = —h.

Then

h(z) = /P(2) = |2

Proof. If y(na:) = w = u + v, then P;(z) =v=ce
h(o) = 1 and (*) imply that Lh(na;-0) = €¢'.

The polydisc carries the product Riemannian metric and the product
G of | copies of SU(1,1) operates on D in the obvious way as an isometry
group. Let K denote the subgroup of G that is the product of ! copies of
SU(1) and let A and N denote the products of ! copies of the corresponding
group for the unit disc. Clearly, D = NA-o0,0 = (o,...,0). Also, D =
KA -o, and K acts on the distinguished boundary T in the obvious way:
k-b = (k1-b1,...,k b)) where the action of SU(1) on the components was
given earlier.

Ifa€ A, thena = (al,...,a,). If a; = a4, foreach i and t = (¢4,...,4),
let a = a;. Set p(t) = E ) tie

A function f on the polydlsc Dis N- mvanant if f(z) = f(nay -0) =
F(v) = ¥(t), where v = (v1,...,v,) and v; = €%, 7(2;) = u; + V—1v;.

The Laplace—Beltrami operator L for the polydisc is the sum of the
hyperbolic Laplacians:

Lf(Z) = {Llf(, 22y *’zl)}(zl)
+ {L'.!f(zl’ “yee 'azl)}(z:-’) +...+ {L[f(21,22, .o '7')}(21) ’

where L; denotes the Laplace-Beltrami operator on the disc D;. It follows
that the equation Lf = Af on D has positive solutions if and only if A > —I.
This is because if such functions exist, then minimal or extremal solutions
exist and (cf. Freire [2]) such a function is minimal if and only if it is a
product of minimal functions f; on D; where L; f; = A;, and Ay +.. .4+ X = A.

To each point b in the distinguished boundary T' = T} of an I-polydisc D,
let Pp(z) = ]'[5:1 Py, (2;) denote the product of the Poisson kernels Py, (2;) =

1- Z; 2
b.——z.-

2t Furthermore,

on each of the component discs D;. Then P, satisfies Lf =
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Further, if A\; = 46;(6; — 1), 8; > 1/2, then ]'I:-=1 Pf,"(z.-) is a minimal

solution of the equation Lf = (Ef.=1 Xi)f and every minimal solution has
this form.

In particular, if A = —[, the minimal solutions of the equation Lf = —If
are the functions /P,, b € T = T,.
Consequently, every non-negative solution h of the equation Lf = —If

has a representation as
h(z) = [ v/Pola) p(db),
T

for a unique Borel measure p on the torus . The normalized Haar measure
db on T represents the unique positive K-invariant solution $o of Lf = —[f
on D for which f(o) = 1. From this it follows that &y(z) = H:-=1 do(2i)-
The next result is an immediate consequence of Proposition 2.2.

PROPOSITION 2.4. Let Dy be the unique positive solution'c;f the equation
Lf = —If for which f(o) = 1. Then $y(z) = 1 implies z = o.

The formula for the Laplacian implies that if f is N-invariant on D, and
f(nay -0) = F(v) = $(t) = e”Vp(2), then

(+%) Lf(na; -0) = eV {Ap(t) - (1)} .
As in the case of the unit disc this has the following important consequence.

PROPOSITION 2.5. Let h be a positive function on the polydisc D such
that

(1) h is N-invariant;
(2) h(o) = 1; and
(3) Lh = —lh.

Then, if 1=(1,...,1),

!
h(z) = VPi(2) = [[ VPi(2).
i=1
Proof. P;(na;-0) = €?#(!), Furthermore, (++) implies that Lh(na¢-0) =
e”®) as h(o)=1. =

3. The Martin compactification. Since for the hyperbolic disc,
L + Id has a Green function, it follows that one also exists for L + IId on
D. In other words, there exists a function G(z,w) such that if Gp(z) =
J G(z,w)p(w) dv(w) where v is the volume measure, then G(L + IId)p =
=@, for all smooth functions ¢ with compact support.

The Martin compactification D of the polydisc at the bottom of the
positive spectrum is the compactification D of D for which
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(1) the functions w — G(z,w)/G(o,w), z € D, extend continuously;

(2) the extended functions separate the points of the ideal boundary
D\ D (see [10], also [14]).

The Martin compactification is metrizable (the proof in [10] applies here).

DEFINITION 3.1. A sequence (Wy)n>0 of points w, in D will be said
to be fundamental if for every z € D, h(z) = lim,—o G(2,w,)/G(0,wy,)
exists.

The following elementary lemma will be useful.

LEMMA 3.2. Let K, and K, be two metrizable compactifications of D.
Denote by i, and i the respective embeddings of D onto dense subsets of
K, and K,. The following conditions are equivalent:

(1) there is a continuous map 7 : Ky — K, such that 7 oi; = %;; and
(2) if a sequence (z,)n>0 in D converges in K, then it converges in K.

Proof. Clearly (1) implies (2). Assume (2), where a sequence (Z,)n>0
in D converges to b, € K, means that by = lim,_ o 12(Z5)-

Define © : Ko — K; by setting w(i3(z)) = i;(z) for all z € D and
m(b2) = by if by is the limit in K; of a sequence in D that converges to b,.
Interlacing two sequences that converge to b, shows that = is well defined.
It is clearly onto.

Since D is locally compact it is open in each compactification and so =
is continuous if V = 71U is a neighborhood of b; in K5 whenever U is a
neighborhood in K; of b; = w(b3). If V is not a neighborhood of b,, then
there is a sequence in D that converges to b but not to ;. This contradicts
the definition of 7. m

To prove that the Martin compactification is D, it therefore suffices to
prove that (1) every fundamental sequence of points in D converges to a
boundary point, and (2) every sequence of points in D that converges to
a boundary point is fundamental. This will be done in the next section
(see Theorem 4.7) by showing that convergent E-bounded sequences are
fundamental and by computing the limit functions for these sequences.

Since the operator L + !Id is self-adjoint with respect to the volume
measure dv and invariant under isometries, it follows that for all z, w:

(1) G(z,w) = G(w,2);
(2) G(g-z,8-w) = G(z,w) for all g € G; and
(3) G(—z,—-w) = G(z,w).
From these properties of the Green function and the fact that D = NA-o

one obtains the following important formula, due to Dynkin in [1] in another
but similar context.
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PRroPOSITION 3.3. Leta,a, € A and n € N. Then
G(na-o0,a; -0) = G(—(a~!n;!-0),a, -0), where n, =a;'na;.
Proof.
G(na-o,a;-0) =G(a;'na-o o) = G(n.aa; " -0,0)
=Glai* 0,070 10) = G(-(a5" o).~ o)

=G(a; -0,—(a™'n;! -0)) = G(-(a'n;! - 0),a; - 0),

1

since a;! -0 = a_¢ -0 = —(a, - 0) in view of the fact that in the unit disc,

a; -0 =tanht. =

4. Computation of the limit functions

DEFINITION 4.1. If A is a limit function and g € G, define Sgh to be
the function

Sgh(z) = h(g-2z)/h(g-0), z€D.

PROPOSITION 4.2 (cf. Dynkin [1]). Let h be the limit function determined
by a fundamental sequence (W, )n>0 and let (g, )n>0 be a sequence in G that
converges to g. Then (7' - Wn)n>0 is a fundamental sequence and Sgh is
the corresponding limit function.

Proof. This is obvious when g, = g for all n as

G(g-2,wn) _ | G(z,g7' - Wa)
9= I Gy = " Glorwn)
For any z € D, the set {g, -z|n > 0} U {g- z} is compact. The limit in
Definition 3.1 is uniform on compact sets by Harnack’s inequality and so

_ G(g, -2, Wn) G(z’g;z-l “Wp)
M D= TCow) e Glowa)

Note that for k € K, Skh(z) = h(k-z) and soif k- (1,...,1)=k-1=
b € T, then SxvPy(z) = VPo(k - 2z) = /P;(z), since on the hyperbolic
disc, P.is(ez) = Py(2).

PROPOSITION 4.3. Let (W5 )n>0 be a 0-canonical sequence with limit point
b € T. Then it is a fundamental sequence and the limit function h is \/P,.

Proof. In view of the action of K on the limit functions, it suffices to
consider the case where b = 1. Furthermore, if w, = k,a, -0 and k,, — e,
the sequence (Wy ), >0 is fundamental if and only if the sequence (a, - 0)n>0
is fundamental. )

Let (a,, -0)x>0 be a fundamental subsequence of (a,-0)n>0. If a,, = ay,,
then t;(k) — oo, 1 < ¢ < I. It follows from Remark 2.1 and Proposition
3.3 that the limit function is N-invariant since the conjugation in N takes
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place component by component. Since h(0) = 1, h = /P; by Proposition
2.5. The result follows from this identification of the limit of a fundamental
subsequence. =

PROPOSITION 4.4. Let (Wy,)n>0 be a convergent E-canonical sequence
with limit point (0,b). Then (W,)n>0 s a fundamental sequence, and if h
is the limit function, then

h(Z) = ¢0(21)\/ Pb(22 ’

where z, = (zi),...,2i,), 22 = (2j,,..+,2j,) and the functions $o(z,) =
®F(z1) and Py(z;) are defined relative to the two polydiscs D and Dg:
determined by E.

Proof. It suffices to consider the case where b = 1.

View D as the product of Dg and Dg and the group G—and its relevant
subgroups—as the product G(1) x G(2). Then w, = (0,k,(2)an(2)-0). As
k,.(2) — e, the sequence (W, ),>¢ is fundamental if and only if the sequence
(0,a,(2) - 0)n>0 is fundamental.

Let

T G((zl ) 22 )v (07 an, (2) : o))
HE%) = e, ((0,0), (0.0, (2)- 0))
be the limit of a fundamental subsequence.

As pointed out in §2, the limit function A is represented by the Pois-
son kernel /P, and a uniqie measure p on the torus T'. This measure is
K(1)-invariant because h has this property. Hence, u is the product of the
normalized Haar measure on the distinguished boundary Tg of Dg and a
unique measure 7 on Tgr.

Consequently, h(2z;,22) = Po(z1)f(22), where $y(z;) is the unique posi-
tive K'(1)-invariant solution of the equation Lgf = —|E|f on DEg for which
Po(0) = 1 — |E| is the cardinality of E. To show that f(z;) = /Pi(22),
it suffices in view of Proposition 2.5 to show that f is Nj-invariant. This
follows from Remark 2.1 and an obvious modification of Proposition 3.3,
since if a,,(2) = a,, then t = (t;,,...,t;,) and t;, — 00,1 < ¢ < m,
where E' = {j; < ... < jm}. As in the previous argument, this establishes
the result. =

Remark. The above argument is a simple illustration of an argument
used extensively by Dynkin [1] and Karpelevich [6].

COROLLARY 4.5. Let (Wy)n>0 be a convergent E-bounded sequence with
limit point (w,b). Let ®w(21) = Sg1)PF(21), where g(1) € G(1) satisfies
g(1)-w = o. Then(Wy)n>0 is a fundamental sequence and the limit function

h is
h(z) = ®w(2z1)V/ Po(22),
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where z, = (2i,,...,2;,) and 22 = (zj,,...,2j,)-

Proof. If w, = (w,(1),w,(2)) and g(1) - w = o, then the se;luence
(0, Wn(2))n>0 is E-canonical with limit (o, b). Consequently, by Proposition
4.2, the original sequence is fundamental with limit function h(z,,z;) =

Sg(P5 (21)v/ Po(22)) = (Sg1)®5 )(21) v/ Po(22), g = (g(1),€). m

PROPOSITION 4.6. The correspondence (w,b) — &y, (21)/ Po(22) is in-
Jective.

Proof. Proposition 2.4 implies that w is the unique point in the polydisc
where &, takes the value 1. The result then follows from the fact that the
Poisson kernel of the unit disc is parametrized by the unit circle. m

THEOREM 4.7. Every fundamental sequence converges to a unique bound-
ary point (w,b). Conversely, every sequence convergent to a boundary point

is fundamental. Hence, D = D.

Proof. The sequences that converge to a boundary point are the con-
vergent E-bounded sequences, for a suitable proper subset E of {1,...,1}.
By Corollary 4.5 they are all fundamental.

Conversely, it follows from this and Proposition 4.6 that the subsequences
of a fundamental sequence that converge in D all converge to the same
boundary point. =
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