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In [18] Stein has considered one-parameter semigroups of operators
{T'};~, defined simultaneously on all spaces L,(M), 1< p < oo, for a
measure space M, which satisfy the following properties: ||T* Sl < NIflips
T is a self-adjoint operator on L,(M); T'f >0 for f>0; T‘1 = 1.

One of the leading examples of such a semigroup is that whose infin-
itesimal generator is a laplacian on a Lie group G. It is called the heat-
diffusion semigroup. Another semigroup of this type is the Poisson semi-
group closely related to the previous one, to which the major portion of
[18] is devoted. )

The aim of this paper is to study spectral properties of operators
T* simultaneously on all L,-spaces in the case where 1" is the heat-diffusion
semigroup or the Poisson semigroup and the underlying Lie group G is
of polynomial growth, as well as some tauberian properties of the solutions
of the heat equation and the Laplace equation on G.

The basic tool for that purpose is a commutative Banach *-subalgebra
A of L,(G) generated by the fundamental solution of the heat equation
onh @. For a Lie group @ of polynomial growth we prove first that 4 is
symmetric and that for an r large enough the functions C.(R) operate
on a certain dense subalgebra of A into A. This leads to the proof that
A is regular and allows to establish the Tauber-Wiener property for
A, whieh, in turn, yields tauberian theorems for the solutions of the heat
equation (and of the Laplace equation) on G.

Suppose that for an f in L, (@) the function u(x, t) satisfies

0
(%) dzu(x,t) = a‘u(ma t), u(x,0)=f(a) and oo (- y )lloo < 11 Moo -
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Hence if, for a t,, limu (2, t,) exists and is equal to a, then for every
g in L,(@) e

limg*f(z) = afg.

(The same holds if the right-hand side of (*) is replaced by —d*u(z, t)/0t’.)

This paper contains essentially the material presented in a series of
lectures given during the spring of 1973 at the University of Nancy. We
have included here much of the preparatory material and, therefore, the
better part of the paper has an expository character. It presents general
properties of the laplacian on a Lie group and the fundamental solution
of the heat equation on it. All the theorems presented in sections 1-3
are known and are due to Nelson [14] and to Nelson and Stinespring [15].
The proofs given here avoid the theory of elliptic operators on which the
original proofs were based, the main tool being simply the Sobolev ine-
quality. In many points the dependence of our presentation on Garding
[4] and Stein [18] is apparent.

Perhaps some novelty could be claimed in section 4. The original
proof of proposition 4.1 due to Nelson [14] is based on the theory of Markov
processes and is fairly involved. This, for the purpose it served (i. e.,
a construction of analytic vectors for a representation) was greatly simpli-
fied by Garding [4]. Here we give still another proof of Nelson’s lemma,
which seems to apply to a wider class cf operators and directly gives
the original L, version of Nelson, which is vital for our study.

1. Submultiplicative functions on a Lie group. Let G be a connected
Lie group. By LG we denote the Lie algebra of differential operators of
the first order acting on (7’ (@) and commuting with the right translations,
i.e., if Xe LG and feCP(G), then’

X (fs) = (Xf);, where f,(y) = f(yz), @,y<@.

L@ is a finite-dimensional linear space over the reals. Every element
X of LG defines a homomorphism

R>t—>exptXe@G

in a way such that for an f in C®(@)
d
(Xf)(@) = —f(exPIX -2)]1ms-

For an arbitrary function f on G we write

(1.2) . | Xf|(x) = limsup [¢|~!|f(exptX -x) —f()].

t—0

Let dr denote the differential of the left-invariant Haar measure
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on G. We write
|U| = fdm
U

for every Borel set U in G.
We write

fr 9> = [f@)g(a)dn
for fe L,(@), ge L,(G). For f,g in C7(G) we have
(1.3) Xf, 9 = —<f, Xg)
because, since dx is left-invariant,
[flexptX -2)g(x)de = [ f(x)g(exp[ —tX]-a)dz,

whence, by (1.1), (1.3) follows.
Let X,, ..., X, be a fixed basis in LG. For every f in C*(G) we define
a vector-valued function

Vf(z) = (Xif(2), ..., X f(2))

and we write
(1.4) 7 fl(@) = () 1,5 1))
i

For non-differentia,ble functions, the right-hand side of (1.4) also
makes sense, if only |X;f|(#) is understood as in (1.2).
For a fixed x# in @ we define a linear mapping

(1.5) LG> XX e T (@),

where T,(@) is the tangent space to G at z, by the following usual formula

X.f = (Xf)().
Of course, (1.5) is a linear isomorphism and thus the selection of the
basis X,,..., X, in LG defines a riemannian (right-invariant) structure
on @

n n n
(16)  g(Xoy ¥o) = Dasb; it X = D'aX;, ¥ = )b X,.
i j j
This, in turn, defines a riemannian metric d(x, y) on G by
]
d(e,y) = int [g(y' (1), v (1) at,
0

where the infimum is taken over all C'-curves y: [0,1] -G such’that
y(0) = 2, y(1) =y and y’(f,) is the element of Ty, (@) defined by

d
Y () f = Ef(y(t))lht.'
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Since the riemannian form g is right-invariant, the metric d is right-
invariant, i. e.,

(1.7) d(xz,yz) =d(z,y) for all z,y,z in G.
We also have

(1.8) d(z,y) < d(x,2)+d(2,9), 2,y,2in G.
Let

(1.9) r(x) =d(z,e€).

Then (1.7) and (1.8) imply
T(wvy) < t(2)+7(y) for all ,y in @.

It is clear that the riemannian measure associated with the riemannian
structure g is the right-invariant Haar measure on G.
Let for an X in LG

n n

1XI = (Y a)* it X= YaX,

J J

Then, of course,
IXM = g(X,, X;) for all z in G.
ProprosITION 1.1. For every X in LG we have
| Xz|(e) < IX].

Proof. In virtue of the definition of d(x,y) we have

1
7(exptX) = d(e, exptX) < [ |IX|lds = | X|it,
0

whence
| X7|(e) = limsup |¢|” v (exptX) < | X]|.

t—6

(1.10) A anction e on G is called subadditive, if

(a) o is Borel and bounded on compact sets,
(b) e(z) =0,
(¢) eo(vy) < o(@)+e(y) for all z,y in G,
(d) e(®) = e(2™"), e G,
PROPOSITION 1.2. For every subadditive function o on G there is a constant
C such that
o(z) < Cr(z)+0C.
Proof. Suppose

n<rz)<nd+1.
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Then, by the definition of 7, there exist points ,, ..., x, such that
(X)) <1, rv(@e27))<1, ..., z(ax!)<1.
" But the riemannian structure defined by (1.6) admits a transitive
group of isometries and it is complete, consequently the balls
{: 7(x) < a}
are compact. Let .
C = sup{e(x): 7v(x) <1}.
‘Then C < oo and

o(®) = o(way’ ... w7 w,) < o(@w,") +... +o(my)
<(m+1)C < Cr(x)+C.

(1.11) A function ¢ on G is called submultiplicative if

(a) ¢ is Borel and bounded on compact sets,-

(b) p(x) > 1, @,

(¢) p(xy) < ¢(x)p(y) for all #,y in G,

(d) p(x) =@(z™"), v q.

If o is subadditive, then 1+ p and e¢° are submultiplicative, every

non-negative power of a submultiplicative function is a submultiplicative -

funection, and a product of submultiplicative functions is submultiplicative.
If ¢ is submultiplicative, then loge is subadditive.

ProprosITION 1.3. If U 18 a relatively compact set with non-void interior
containing e and such that U = U™, then

ty(®) = inf{n: ve U™}
t8 a subadditive function.
PrOPOSITION 1.4. If U is an open sel with compact closure, then
|U™ < O"'|U| for a constant C.

Proof. Since U? has compact closure, there exists a finite set F such
that U? < FU. Hence U" c F*'U and, consequently, |U"| < C"!|U]|,
where C = card F'. !

PROPOSITION 1.5. For C large enough
fe‘c’(”)dw< 0.
Proof. Let U be a relatively compact set such that
G=U 0"
n

Let k¥ be such that
5 (@) < k(@) +k,
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whence
6-'U(-‘t) > ki) ~k

But, by proposition 1.4, for constants a and b, we have
IUn\ Un—ll < a® = elm.

Hence, for # in U"\U""! and a C,

IU"\ Un—lle—CrU(z) < ebn—Cn,
and so
[o0] . o+
fe—CtU(a:)dm < Ze—mlun\ U < 20'(0“’) < oo
n n
L ]

for C large enough.

PROPOSITION 1.6. Let o be a subadditive function on G such that o(e) = 0.
Then for each X in LG we have

| Xol(x) < [Xol(e).

Proof. By (1.10) (c¢) and (d) we have po(y) = o(2 'ay) < o(x™?) +
+ o(xy) = o(x)+ o(wy), whence

le(2y) —e(¥) < e(@).
Thus, for every X in LG, we have
[ Xol(2) < limsup 4|~ o (exptX) = | Xol(e).
—0
2. The laplacian. First let us recall few definitions concerning un-
bounded operators in Banach spaces and at the same time establish

notation (cf., e. g., [3] and [19]).
Let E and F be two Banach spaces. The domain of a linear mapping

A: E-»F

is denoted by D(A4). We assume that for an operator A the domain D(4)
is dense in K. The adjoint A’ of A is an operator

A': F'>FE’
defined as follows:
D(A') = {y'e F': {A=,y’ > < C|z| for all # in D(4)}
= {y'e F': there is an &’ in E' s.t. {(42,y") = (=, 2")}.

Since D(A) is dense in. E, o’ is uniquely defined for each y’ in D(A4’)
and we put
Ay =o'
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An operator A is called closed, if the graph

{(z, Az): e D(A)}
is closed in E x F.

(2.1) We have:
(a) A’ is a closed operator.
(b) A has a closed extension if and only if D(4’) is dense in F".
(¢) If E and F are reflexive and 4 has a closed extension, then
(A')" is the smallest closed extension of A.
If H is a Hilbert space, then we identify H and H’' and we say that
A is symmetric if

(2.2) (Aw,y§ = {x, Ay) for all z,y in D(4),
or, in other words, if
(2.3) Ac A
An operator A on a Hilbert space is self-adjoint if D(A) = D(4A')
and (2.2) holds, i.e., if A = A'.

In what follows we shall use the following form of the spectral theo-
rem:

SPECTRAL THEOREM [3]. Let A be a self-adjoint operator in a Hilbert
space H. Then the spectrum of A is real and there exists a uniquely determined
regular spectral measure E defined on the Borel subsets of R vanishing on
the complement of the spectrum such that

D(4) = {2cH: }m12d<E(}.)w,w>< o},

n

Az = lim f}.dE(}.)a:.

n—->00 -1

If F is a Borel measurable function on R, we denote by F, the function

Foi) = {F(l) ff IF(A) <,
0 it |F(3)| > n.
We put
+o0
(2.4) F(A)z = lim f F, () dE (A=

n—00 _ oo

and we define D(F(A)) as the set of the 2’s in H for which the limit (2.4)
exists.
If F is real-valued, then F(4) is self-adjoint and

Sp(F(4)) = F(Sp(4));
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if F is continuous, then also
(2.5) Sp(F(4)) = F(Sp(4)).

We say that a bounded operator I' defined on a Banach space 35}
commutes with an operator A: E—E, if T(D (A)) c D(A)and ATy = TAx
for all z in D(4).

If A is a self-adjoint operator in a Hilbert space, then 4 commutes
with 7, if and only if E (M) commutes with T for all Borel subsets M of R.
Consequently, if 7' commutes with A, then T commutes with F(4) for
every Borel function F on R.

Now for a connected Lie group G and a basis X,, ..., X, of the Lie
algebra LG of G we write

(2.6) L =X3+...+X2.

We consider L as an operator on L,(G) with the domain C?’(G) which
is dense in L,(G). Let

(2.7) A=IL and D =D(4).
/

We call 4 a laplacian on G. By (1.3) we have

(2.8) Lf,g> =<f, Lg> for all f,g in 'C?(G)-
Consequently, L < L' and so

(2.9) A < 4.
We introduce the following notation:

n

(Vf, Vg) = D <Xify X;9) = —<If, 9> for all f,geCT(@).
j

Similarly, we write
(751, 17gl) = D' UXf1, 1 X;g1>
j

whenever |X;f| and |X;g| are in L,(@), j =1,..., n. Accordingly,
WAz = (Vf, Vi) and IVfIIE = (Vfl, [VS]).
Let
1P = (UFIE +IVFIR™ S fe C2(G).
The completion of (3 (@) in the norm |-||° is a Hilbert space which

we denote by H° and which consists of functions f such that ||fl, and
I1Vf|ll, are both finite.
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Now we are going to prove that 4, as defined in (2.7), is a self-adjoint
operator. Our proof follows that of Gérding [4] which is an adaptation
of a proof by Carleman [1].

ProrosiTION 2.1. We have

(2.10) —Af, > = IVSIIF  for all f in D.
Moreover,
(2.11) 4" = 4.

Proof. First we introduce two regularizations: local and at infinity,
by defining two sequences of functions ¢, and &, (» =1,2,...), where

€n =fn*f:, fneCZO(G)7 Jal(®) >0,

(2.12)
. [fu(@)ds =1, suppf.—e,
and

En = €1% Yn,y
where y, is the characteristic function of an open set U, with U, =« U
and (JU, =G. We have

n+1

(2.13) 1 X &, () < [ 1 Xey ()| do

~

and
(2.14) £,—~1 and X¢&,— 0 uniformly on compact sets.
Let E, be the operator defined by
E,f = fxe,.
Of course,
LE,.f = E,Lf for all fin C3(@)

and so, for every n =1,2,..., the operators 4 and E, commute.
Consequently, since AE,f = E,Af implies
ImAE,f =lim B, Af = Af for fin D,
7—00 n—00
we have

(2.15) if fe D, then AE,f->Af and E,f>>f.

Now to prove (2.10), we take an f in D and for a fixed » =1, 2, ...

we write f, = E,f. Since ¢, has compact support and is infinitely dif-
ferentiable, we have

(2.16) Xf,e Lo(G) for all X in LG.
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Thus
<Afn’fn> = hm<Afn! E'mfn>

= —lim ( .Z (Xif, EnXofod + Z<XJn, (Xibm)fad)-

Hence, in virtue of (2.14) and (2.16), we get

(2.17) ASpy fay = =V Sl

But (2.15) shows that the left-hand side of (2.17) is convergent to
{Af,f> and, consequently, f, is a fundamental sequence in H°, so fe H®
and (2.10) follows.

To complete the proof of proposition 2.1, we take f,g in DNC®
and write

<£an’ g> - <£nf’ Lg> = (Vf7 gVEn)"'(fVEﬂJ Vg)'
Hence, as before, if n tends to infinity, we obtain
Lf,9> =<f,Lg> for all f,g in DNC*,
which, in virtue of (2.14), gives
4f,g> =<f, 4¢> for all f,g in D,

i.e., 4 c 4’ and so, by (2.9), equality (2.11) follows.
It follows immediately from (2.10) that —A4 is a non-negative
operator, whence

(2.18) Sp4 = (—o0, 0].

Let
F,: R>z—>¢“<R".
Then, by (2.4),

(2.19) F(d) =é =T

is a hermitian operator in L,(G). Since the spectral measure of 4 is con-
centrated on the non-positive half-line, we have

T'f= [ &'aB@A)f

and so T' is a bounded operator in L,(@) whose norm is equal to
(2.20) IT!|| = sup{e*: e Spa} <1.

On the other hand, since 4 and hence E (M) commute with right
translations, so does 7%. Consequently,

(2.21) T' is a multiplier on L,(G).
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3. The heat equation on G. Let 4 be a laplacian on a Lie group G
as defined by (2.7) and let 4 > 0. By (2.18), 4 is not in the spectrum of
4, i. e,

(3.1) R, = (A—A4)"" is a bounded operator on L,(G).

We prove the following

PROPOSITION 3.1. (a) R,f = u,*f, where u, is a non-negative measure
on @G.
(b) Aps(@) =1.

Remark. As we shall see later on, the measure u, is absolutely con-
tinuous with respect to the Haar measure.

We prove first the following lemmas.

LEMMA 3.2. For every complex number A which is not in the non-positive
half line of the real axis, the set

{(A—L)p: e CT(@)}

i8 dense in C,(G@) — the space of continuous funmctions on G vanishing at
infinity, equipped with the Ly -norm.

Proof. Suppose u is a bounded measure on @ such that for all ¢ and y
in C? we have '

{(A—L)(p*y), u> = 0.
Then, since 41— L commutes with the right translations,
((A—L)p, uxyy =0 for all pe C7(G).
But since y belongs to L,(G), so does u*y = f. Hence
KL, FH1 = 1Al Ke, /O1 < [ALligllz [1f N2
which sliows that fe D(L') = D(4). Consequently,
{p, (A—A)fy =0  for all ¢ in CX(&)
and so
| i =4f and AL =40,

which, in virtue of (2.10), proves that 0 = f = u*y. Since p is an arbitrary
function in 0P (@), we have u = 0 and the proof of the lemma is completed.

LEMMA 3.3. For A >0 we have
(A — L)l > Allplle  for all ¢ in CT(G).

Proof. Suppose |p|(z) assumes the maximum at a point x,. Then
for a complex number 6 of modulus 1 we have

lpl(wo) = 2(09) (@) and  [#(6p)l, = ROp(x,).

8 — Colloquium Mathematicum XXXI.2
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Consequently, since for a basis Y,,..., ¥, of T, (G)

(Yi+...+X0)f(=0) = Lf(mo), fe0®(@),

we have
% (LOp)(wo) = L[2(0p)](zo) <O

and so
(A —L)plle > 124100 — LR (69)|loo
> A (0p (w,)) — LR (0p) (%) > AR (0p) () = A lp|(2,).

Remark. It is clear that if we take a real non-negative function ¢
in €Y (@) such that Lep(z,) = 0, where z, is a point at which ¢ assumes the

maximum value, then
(A= L)@l = APl

Proof of proposition 3.1.1Itis an immediate consequence of lem-
mas 3.2 and 3.3 and the remark above that there is a unique operator R,
on C,(@) such that

(A—L)R,p = Ry(A—L)p =¢ for all ¢ in CT(@)

and
(Rallo = A71.

Of course, R, commutes with the right translations, i. e., R, is a multi-
plier on Cy(@) and, consequently, there exists a bounded measure u; on
G such that

R,f = u;xf for all f in Cy(G).

Clearly enough,

lpall =271 and  pxf = pyf.

It is not difficult to show that u; is a non-negative measure. To do
so, it is sufficient to show that R, maps non-negative C>-functions into
non-negative functions.

Suppose then that R,p = y, where ¢, ye C5°(G) and ¢(x) > 0. Then
p is a real function. Assume that it takes the minimum at a point z, and
p(xe) < 0. Then

@ (o) = Ap(,) — (Ly)(w) < 0,

since 2 > 0 and (Ly)(z,) > 0, which is a contradiction. The proof of propo-
sition 3.1 is thus completed.
Proposition 3.1 shows that the resolvent R, of L is a bounded opérator

on all L,(@), 1 <p < oo, for 1 > 0. This enables us to apply the theory
of one-parameter semigroups to extent the operators 7%, ¢ > 0, as defined
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by (2.19) to all L,(G), 1 < p < oo. But before doing it, let us recall a few
notions and a theorem concerning semigroups of operators on Banach
spaces.

A one-parameter family {T},., of bounded operators in a Banach
space F is called a semigroup of operators in ¥ if the following conditions
are satisfied:

(a) for every « in F the mapping [0, o0) 3¢ — T, x € E is continuous;

(b) Ty = I;

(¢) Tyyy =T,T, for all s,t>0.

An operator A in E is called the infinitesimal generator of a semigroup
{Thisoy if

(3.2) Az = limtY(T,—I)
t—>0

and if the domain D(A4) of A consists of all elements # in F for which limit
(3.2) exists. If ¢e C3°[0, o), we put

T,o = [ o(t)Towdt.
0

It is easy to verify that
{Tox: pe P[0, o), xe E}
is contained in D(A) and is dense in F; moreover, 7, commutes with A.

The following theorem plays an important role in what follows:

THEOREM OF HILLE AND YOSHIDA. Let A be a densely defined operator
in a Banach space E. If for every A > 0 the operator (A— A)~' = R, exisis
and |R;| < 27", then there ewists a unique semigroup {T,};., of operators
in E such that the infinitesimal gemerator of {T;};., contains A and

(3.3) Tz =lim (ER,,,) x for all z in E.
nso \ T
Moreover, for 1 > 0 we have
(3.4) Rig = [ e*Tizdt, wek.
[}

Now we are ready to prove the following theorem:

THEOREM 3.4. Let G be a Lie group, X,, ..., X, a basis of the Lie algebra
LG of @ and L = X +...+ X;. Then there exists a unique semigroup of
operators

T': C,(Q) - 0(@)

such that

(a) For each p, 1 < p < oo, and each t >0, T is a bounded operator
of the norm 1 on L,(Q) and {T},,, is a semigroup of operators on L,(G).
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(b) T is a self-adjoint operator on Ly(G).
(6) T* is positive: T'f > 0 for f > 0.
(d) For each p,1 < p < oo, the infinitesimal generator of the semigroup
{T*}5o on L, (@) contains the operator L, i.e.,
d
%T‘q) =LT'¢ for all pe C*(G)NL, (@), 1<p < oo,
and

%th — AT'f  for all f in D(4) c Ly(@).

() For every t > 0 there i3 a mon-negative function p, such that
Pie Ly (G)NL (),

T'f =pf for all f in L,(G), 1< p < oo,
and
(0, 00) X@2t,z —>p,(x)e R
18 a C®-function. '
(£) For every t > 0, |pill, = 1.
(g) For every p,1 < p < oo, f in L,(G) and left-uniformly continuous
bounded function f,

u(t, @) = pyxf(x)

18 a C®-function on (0, o0) X G, satisfies the heat equation
0
‘a_t u(t, v) = Lu(t, z),

and u(t, ) tends to f in Ly,-norm if f is in L,(@) for 1 < p < oo and also in
L-norm if f is a left-uniformly continuous bounded function.

Proof. To prove the existence of T%, ¢ > 0, we consider L as an opera-
tor with the domain O3 (@) acting on C,(@). In view of proposition 3.1 (b)
we may apply the Hille-Yoshida theorem to obtain the semigroup
{T*%,-, of operators acting on the Banach space Co(@). Since R, commutes
with the right translations, by (3.3), so do all T%, whence

(3.5) th = yxf,

where », is a bounded measure. By proposition 3.1 (a) and again by (3.3)
we see that », is a non-negative measure and by proposition 3.1 (b) and
(3.3) we get ||| < 1. Suppose (e) is proved. Then 0 belongs to the spectrum
of T* considered as an operator on L,(@), whence by the equality in (2.20),
ITY =1 and, consequently,

(3.6) )l =1 for all ¢t > 0.
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(d) is a simple consequence of the fact that the infinitesimal genera-
tor of T¢ contains L (and 4 in case of Ly(@)) and commutes with 7%, ¢ > 0.

(f) follows from (3.5) and (e), and (g) is a consequence of the fact
that p;, t > 0, is an approximate unit in L,(@) and of (e), which in turn
follows from the theorem of Hille and Yoshida. Thus all reduce to the
proof of (e).

Let us first recall a version of Sobolev’s lemma.

SoBOLEV LEMMA. Let M be a riemannian manifold and let L be the
Laplace-Belirami operator on M (cf. [5]). Let ||-||, denote the L,-norm with
respect to any measure equivalent to the riemannian measure on M. For
every compact set 2 there exist C and 1 such that, for all f in the common
domain of L, ..., L' in L (M), we have

If(@)] < (JZ‘nkau2 for all © in Q.

k=0

Now to prove (e) we take an f in L,(@), arbitrary non-negative integers
k and N, and a t, > 0. Then, if u(f, #) = T'f, we have, by the spectral
theorem,
0

? — f2k)~2N+k32u<dE(A)f,f>

—00

ak
(3.7) ’ T AVu(t, x)

< max {2% 2PN ke o: 2 < 0}(IfIE  for all 0< <,

which, by Sobolev’s lemma, proves that «(t, ) is a C®-function. Applying
(3.7) with k¥ = 0, in view of (3.5), we see that there exists a constant C
such that, by Sobolev’s lemma,

e*flle = IT'fllo < Cliflls  for all f in L,(@),
which shows that » is absolutely continuous with respect to the Haar
measure whose Radon-Nikodym derivative p, f)elongs to Lg(G@). But for
a fixed ¢ and arbitrary m an application of inequality (3.7) yields

< N14%plly = 4™ (Dyg*Pya)lls < Cpy D225

which, via Sobolev’s lemma, shows, as before, that p;e C°(&).

COROLLARY 3.5. For A >0 the measure u,, as defined in proposi-
tion 3.1, i8 absolutely conmtinuous with respect to the Haar measure; its
Radon-Nzkodym derivative we denote by k,1

Proof. By (3.4) we have
(3.8) parf = f e~ pyxfdt
0

for all f in L,(@). Since [p,l, =1, the function
(0, ) 2t >e¢™*pe L,(@)
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is Bochner integrable and so, if

o0

(3.9) ky = [ e ¥p,dt,

k; is an L,-function and, by (3.8), the Radon-Nikodym derivative of u,
is k,.

4. Behavior of the p’s at infinity. For a Lie group @ we fix a basis
Xy ..., X, in the Lie algebra LG. Consider the laplacian defined by it
and the semi-group of L,-functions p,, t > 0, as defined in section 3.
Our aim now is to show that the p,’s decrease very rapidly at infinity.
We prove the following

PROPOSITION 4.1. For every submultiplicative function ¢ on G and
a ty > 0 there 18 a constant C such that

(4.1) P> = [PlD)p(@)do<C  for all 1<t,.

The selection of the basis induces the norm || X| in LG, the riemannian
structure in G, and the subadditive function = as defined in (1.9).
For every natural number m let

() if 7(x) < m,
Tm(w) = .
m if v(x) > m.
It will be convenient to use the notation
T () = 7(2).

Clearly enough, 7,, is a subadditive function vanishing at e, whence,
"by propositions 1.1 and 1.6, we have for all X in LG

(4.2) | X7l (2) < | Xyl(e) < X))

Let
U={reG: v(x) < 1}.

~ Then U is an open set with compact closure. Let fe C°(U) be a non-
negative function such that [f(z)dr =1. We then have

LEMMA 4.2. For every m = oo, 1,2,... the inequalities
(4°3) Tm(w) -1 gf* Tm(w) g Tm(w) ’:‘1
hold for all x in Q.

In fact,

fron@) = [f@) ) dy < [ ) 0n(y) Y + 10 (2) < Tp(@) £ 1
U
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and
[rm(@) = [f@)emyT'2)dy > — [f(y) tm(9) Y+ T (%) > T (@) —1.
U

LEMMA 4.3. For every X in LG there exist constanis A x and By such
that for all m = oo0,1,2,... we have

X (f*1n) (@) < Ax, |X(f*7n)(2)| < Bx

for all z in Q.

Proof. Since fx7, is a C*-function, fe 3 (@) and X commutes with
the right translations, we have

(4.4) X (fxvy,) = X((Xf)*1,).
For a ¥y in G we write

y lexptX-y = exptdd, X,
whence
y~lexptX = exptdd, X -y~

Now, using this and (4.2), we get
(4.5) X (f*7y)(2)
= [limt~" [ f(y) vy~ exp1X @) —f(y) T(y~ @) dy|

t—0

= [limt? [ f(y)(rn(exptdd, X -y~ 2) - m(y“w))'dml
t—0

< [ If ()| limsup |t 7|7,y (exptAd, y~ @) —1,(y " 7) | dy

t—0 .
< [If ()14, Xzl (v~ 2)dy < [1f(9)I14d, X||dy = Ax.
Putting Xf in place of f in (4.5) and applying (4.4) we obtain
By = [|Xf(y)||4d,X|dy.

LEMMA 4.4. Let C be an arbitrary positive constant and let for m = oo,

o

1,

(4. Cfetp(x)+C .

) (p'm(w) =€

Then there is a constant K independent of m = oo, 1,2, ... such that

=]

| Ly, (®)| < Kg,,(x) for all x in G.
Proof. For each j =1,...,n we have
1 Xipml = (CXj(f*7,) +(CX;(f*7,)!|om < (OBx; + C* A% ),

whence, summing over j = 1,...,n, we get the result.
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Now we are ready to prove proposition 4.1.

Proof of proposition 4.1. In virtue of proposition 1.2 and (4.3)
it is sufficient to prove that for an arbitrary positive constant C there
is a constant K such that

(4.7) (Pry Pooy < €5H2C.
Let ¢, be the sequence of functions with properties (2.12) and let
Ut () = Dy*e(), Uk,0 = Ok

By theorem 3.4 (e), u;, is a non-negative function in L,(G). Since,
for m =1,2,..., the function ¢,, is bounded,

Qs Py = [ Ui (@) @ () dov

is finite. By lemma 4.4, there exists a constant K, independent of m,
such that

(4.8) Uity [ Lp]) < KUty Py«
Hence, since u,, is non-negative,
(4.9) [,y Lpm)| < Kty @)

But, if £, is the sequence of functions defined in section 2 which satis-
fies (2.14), we.have

'<uk,h P¢m> = 1im<£n Up,ty Xz¢m>
= —lim <(X£n) Ut X(Pm> —lim <§n Xuk,t H X‘Pm>

= '—<Xuk,t7 X‘pm>°
Applying this procedure once again, we see that

d
(4.10) QUpty Loy = (Lt gy Py = a Uty P -

Now, by (4.9) and (4.10), we get

< K Upyy Py -

d
‘ '&? <uk,t ’ ‘pm>
Consequently,

<uk,H q’m> < etK <uk,01 ‘pm> = etK <ek7 Fm)

Pasging with & to infinity we obtain

Doy Pm) < G‘K‘Pm(e) < elxﬂc’
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which, as m tends to infinity, gives (4.7) and completes the proof of propo-
sition 4.1.

5. The subalgebra of L,(G) generated by the pS’s. Let o denote the
linear span (over C) of the functions p,,? > 0. Then, since p,*p; = p,.,,
(8,t>0) and p; = p; (! > 0), & is a *-subalgebra of L,(G). It follows
immediately from proposition 4.1 that if feo and ¢ is a submultiplicative
function on @, then

(5.1) Iflly = [1f(@)p(@)de < co.

Of course, since ¢ is submultiplicative,

(5.2) If*gll, < lifllllgl, for all f,g in .

Let A be the closure in the norm |||, of .

PROPOSITION b5.1. Let, for a A > 0, k, be the funcltion defined in corol-
lary 3.5, and let for a t > 0

(5.3) Pla) = (m)7 [ 26 p,, dd.
0

Then P' and k, belong to A.
Proof. By (3.9) we have

(5.4) ky = [ e *p,dt,
0

so it suffices to note that both integrals (5.3) and (5.4) are convergent
in the L,-norm.

Remark 5.2. The function P* is called the Poisson kermel and for
every function f in L,(@), 1 < p < oo, the function

u(t, x) = P'*f(x)

satisfies the Laplace equation

02
Wu(t,w)—}-Lzu(t,w) = 0.
Moreover,

P* =P, >0,

/

and for every 1< p < oo and fin L,(G) we have

lim IP**+f —fll, = 0.
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For these and many other properties of the Poisson kernel see, e.g.,
Stein [18].

For a commutative Banach algebra B we denote by IR, the space
of regular maximal ideals of B, and for each z in B we write & for its
Gelfand transform. '

A Banach *-algebra B is called symmetric if the spectrum of each
element z*x is real non-negative. .

Let us list here several simple and well-known properties of sym-
metric Banach *-algebras (cf., e. g., [17]).

A Banach *-algebra is symmetric if and only if there is a *-representa-
tion T of B into the algebra of bounded operators on a Hilbert space
such that

(5.5) v(z) = lim|z"|'" = |T,| for all z =" in B.

n—o0o0

We note that the inequality
(5.6) v(x) > || T,

is always satisfied for hermitian elements x in B and any *-representation T'.
We say that a locally compact group G is amenable if

(5.7) 1T < IRl for all # = a* in L,(@),

where T is any *-representation of L,(G@) and R is the regular representa-
tion of L,(G) on L,(G).

It is not difficult to prove that (5.5) implies that for every hermitian
element x in B we have

(5.8) Spgzr = SpT,

(ctf., e.g., [9)]).
If B is a commutative Banach *-algebra, then B is symmetric if and

only if, for every element x in B, we have z* = .

If a commutative Banach *-algebra is symmetric, then the set of
functions {#: xe B} is dense in the space of continuous functions vanishing
‘at infinity on IN. | '

A Banach *-algebra is symmetric if and only if all the commutative
Banach *-subalgebras of B are symmetric.

ProrosttioN 5.3. If A is symmetric and G is amenable, then for all
1<p< oo we have

Sp.L = Sp, L,

where by Sp,, L we mean the complement of the set of complex numbers A such
that (A— L)™' is a bounded operator on L,(G).
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First we prove

LEMMA 5.4. Let M be a measure space and let X be a dense subspace
of all L,(M), 1< p < oo. Suppose A is8 an operator defined on X such that
A maps X into itself and is essentially self-adjoint on L,(M). If Sp, A
= Sp, 4, then Sp,A = Spy, 4 for all p, 1 <p < oo.

Proof. Suppose i¢ Sp, A = Sp, 4. Then R, = (1—A)~! is bounded
on both L,(M) and L,(M) and so, by Riesz-Thorin interpolation theorem,
R, is bounded on L,(M), 1 <p < 2. Hence

Sp,4 = Sp, A for 1<p<2.
2.

This shows that Sp,4 is real for 1< p <
on L,(M), we have

(5.9) Af = A'f for f in X,

Since A is symmetric

whence, by (2.1) (b), A has a closed extension on L,(M) for every p,
1 < p < oo. Consequently, by a theorem in [19], p. 225,

Sp,A = Sp,A’, where ¢ =p(p—1)".
Hence, in virtue of (5.9), we have
(5.10) Sp,4 =Sp, 4, 1<p<2.

But, since 1 < p < 2 implies 2 < ¢ < oo, (5.10) together with the
Riesz-Thorin interpolation theorem give
Sp, 4 < Sp,4A = Sp,4,

which completes the proof of the lemma.

Proof of proposition 5.2. In virtue of (5.5), (5.7) and (5.8), if
G is amenable and A is symmetric, then for every element f = f* of A4 we
have

(5.11) Spaf = SpEy,

where E;g = f=*g, ge L,(G). Since Sp,f is then real non-negative, i. e.
does not separate the complex plane, (5.11) yields

(5.12) Sle((r’)f = Spaf = SpER;.
But (5.12) applied to the function p,, ¢ > 0, gives
Sp, T' = Sp,T¢  for all t >0,

since the spectrum of p, in the Banach algebra L, (G) is equal to the spectrum
of T' considered as an operator on L,(G). Hence, by lemma 5.4, for all
P, 1< p< oc, we have

(5.13) Sp,T* = Sp,7* for all ¢t > 0.
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Now, by [7], p. 4567, Corollary 2,
exp[t8p,L] c Sp,T" = Sp,e”  for all ¢t > 0.
In virtue of the spectral theorem and (2.5), since 4 is non-positive,

Sp, e’ = exp[tSp, 4]~ = exp [tSp, 4]1u{0}.
Thus '
exp [t8p, L] < exp[iSp, 4] for all ¢ >0,

whence, since tSp, 4 is real for all ¢ > 0,
(5.14) Sp,L = Sp, L, 1<p< oo.

To prove the converse inclusion, suppose that A¢Sp,L. Then R,
= (A—L)~! is a bounded operator on L,(G) which commutes with the
right translations. Therefore R, is a multiplier on L,(G) and so B,f = u*f
for all f in L,(@), where u is a bounded measure on @. Consequently,
R, is bounded on all L,(G@), 1 <p < oo, and so A¢ Sp, L. This, together
with (5.14) implies

Sp, L = Sp, L

and, by lemma 5.4, completes the proof of proposition 5.3.
A locally compact group @ is called of polynomial growth if for every
compact set U there exists a natural number r such that

(5.15) |U" = 0(n") as n tends to infinity.

If @ is connected, then the minimal natural number r for which
(5.15) is satisfied is the same for all compact sets with non-void interior;
the number r is then called the degree of growth in G,. For a characteriza-
tion of connected Lie groups with polynomial growth see [11]. Compact
extensions of nilpotent groups are of polynomial growth. A group of
polynomial growth is amenable (cf. [8]).

PRrOPOSITION 5.5. If G 8 of polynomial growth, then A i3 symmetric.

Proof. First we are going to show that for every f =f* in &
we have

(5.16) v(f) < B,

where RB,g = f*g, ge Ly(G). To do this we let U to be a compact symmetric
neighbourhood of ¢ in G and we let v, be as in proposition 1.3. We put

p(z) = expry(x) for ze@.
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Then for an arbitrary m we have

Il = [If*"@lde+ [ If*"(@)lp(@)¢(2) " do

um a\yum
< [T™2 0.+ IS Iy
<

Om™ | RA™If s+ If Wi

Putting m = n?, for n large enough we get ||f**|l, < C'»"||R,", whence
v(f) =lim |f*V" < IR,

Now since hermitian elements of &/ form a dense subset in the set
of hermitian elements of A and both v: A >f >v(f)e Rand A >f - ||[R/le R
are continuous functions (because A is commutative), inequality (5.16)
holds for all hermitian elements in 4 and so, by (5.6), equality (5.5) follows,
whence A is symmetric.

From now on we shall consider only Lie groups G of polynomial
growth. For such G the algebra A is symmetric and, as we are going to
see soom, it is regular and has the Tauber-Wiener property. To show this
let us recall first few notions. .

We say that a function F': R — C operates on an element f in a semi-

simple commutative Banach algebra B, if f i a real-valued function on
Mp and there exists (necessarily unique) element g in B such that

P(f(M)) = §(M) for all M in Mg.

We then write ¢ = Fof.

If B does not contain the unit, then only functions F for which #(0)
= 0 can operate on B.

Let

00

o\
e(t) =e*—1 = Z%ﬂ)—

For an element f in a Banach algebra B we write

P ek

The following proposition and its proof are well-known (cf., e. g.,
Kahane [13]). We include it here for completeness sake.

PROPOSITION 5.6. If for a Banach algebra B and an element fin B such
that f is a real-valued fumction we have

(5.17) e(nf) = 0(n*) as m tends to infinity,
then the functions F in C**? (R) such that F(0) = 0 operate on f-
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Proof. Let

FeC¥**(R), F(0) = 0 and F(s) = 0 for |8| > a.
Then, of course, if

F(n) = (2a)! faf(s)exp ( —1 % ns) ds,
then

A

F(n) = O(n~%+2))

as n tends to infinity
and

(5.18) D F(n) = F(0) = 0.

In virtue of (5.18) we have

+oo
F(s) = fo’(n)e(ngs).

Let
+ o0 -
5.19 = F —f).
(5.19) 9= D Fme(n ]
By assumption,
TC

and so the series (5.19) is absolutely convergent. Moreover, for every M

F(n)

0w

in Mp we have

+ 00
§ () = > Bnye(nZfon)) = F(fan).

If & is of polynomial growth and a function f* = f in L, (@) has com-
pact support, then there is an r such that C7(R) functions operate on f.
This was proved by Dixmier [2]. Here we need a stronger version of this
theorem.

ProrosITION 5.7. If G i3 of polynomial growth of degree r, then the
unc tions F such that

FeCP+3R) and F(0) =0

operate on functions f = f* of o into A.
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Proof. Since A is symmetric, it suffices to show that for a function
f=f"in & we have

(5.20) le(nf)ll, = O(n™®+)  as n—>oo.

Let U be a compact symmetric neighbourhood of ¢ in G and let zy
be defined as in proposition 1.3. Let ¢(2) = expry(x). We then have

k
le(nf)ll, = “2 (o f) \lenf lo < exp[z|fl,].

Hence for each m

(521) le@f)ly = [ le(nf)@)dz+ [ le(nf)(@)p(2)p(2) do
ym aAum

< U™ |le(nf)ll,+ sup {p(2)~': e U™ exp[n|fIl,]
< Om™? lle(nf)ll; 4 exp ['"'”f”,p—m]’

where C depends on U and G only. But

lle(nf )l < ITIHIf e,
where T is the operator on L,(@) defined by

T =inI+ ) [(k+1)!17 (inR)*
k=1
and _
By =f*g, geLs(6).
Since f = f*, T is normal and, by the spectral theorem,

17| < sup{le™ —1|[¢|": te R} = n.

Thus putting m = x||f|l, in (5.21) we obtain (5.20).

A commutative semi-simple Banach algebra B is called regular if
for every closed subset C in Mg and a point M ¢ C there is an element
g in B such that

g(M,) =1 and g(M) =0 for all M in C.
ProPOSITION 5.8. If G is of polynomial growth, then A ts regular.
Proof. Since «/ is dense in A and 4 is symmetric, for every compact

set C in M4 and a point M ¢ C there is a function f in o/ such that f(M,)
=1 and |[f(M)<1/2 for all M in C. Let

(5.22) FeC®(—m,m), F@1)=1, F(s)=0 for |s|<1/2.
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Then, by proposition 5.7, there is a ¢ in A such that
F(f(M)) = §(M) for all M in M,.

We see that g(M,) = 1 and g(M) = 0 for M in O, as required.
PROPOSITION 5.9. Let G be of polynomial growth. Let further a function F
satisfies (5.22) and let

g = Fop,, t>0.

Then supp g, is compact and

(5.23) lim|g,*h—h|, =0 for all b in .
-0

Proof. Since F(0) =0 and F(1) =1, we have

1= ji’(n)e‘” =§ﬁ(n)e(n).

Consequently,

@g*h—h = Zﬁ’(n)e(np,)*h—h

= ' F(n)[e(np,) *h—e(n)h],

whence
(5.24) lge*h— Rl < D) IF (n)e(np,) xh —e(n)hll,.

Now repeating the argurhent of the proof of proposition 5.7 with
e(np,)*h in place of e(nf) we see, by (5.21), that for all natural numbers
m we have

(5.25)  lle(np,) %hlly < Cm™ |le(npy) *hlls+ exp [nipgll,—m]- [k,
< Om™ 8] ||k]l; 4 exp [n IPelle —m]- llh_ll.p,
where S is the operator on L,(G) defined by

Sf =e(np)*f, feLy(@).
Consequently, since p; = p;, we get, by the spectral theorem,
18] < sup{|e’™ —1]|: te R} = 2.

In virtue of proposition 4.1, for ¢ < ¢, there is a constant d (independent
of t<t,) such that [pll, <d for 1 <i,. Putting m = (d+1)n in (5.25),
we get
le(npg) * bl < Kn',
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where K does not depend on t<?, and n. This shows that since
FeOF(—m, ), the series (5.24) is convergent absolutely and uniformly
with respect to te¢ (0, {,]. Thus to prove proposition 5.9 it suffices to show
that

lim (le(np,) *h —e(n)h|, =0 for each n.
But t—0

le(npy) b —e(n) xhll, < D n¥ (k) Ipgxh— Rl
k=1

and this series again is convergent uniformly with respect to te R*, since
|pye* b — hlly < 2Ik]l,. Consequently,

Hm [le(npy) * h —e(n)kly < D) n*(k!)~ Lim |p, xh—hl, = 0,
t—0 k=1 t—0

which completes the proof of proposition 5.9.

COROLLARY 5.10. The set of elements f in A such that supp f 8 com-
pact, is dense in A.

Proof. We have just shown that the set {g;*h: he o/, 1> 0} is dense

in 7, so it is dense in A. On the other hand, since (g,%k)" = §,h, the
support of (¢,*h)" is compact.

A commutative Banach algebra B has the Tauber-Wiener property
if every ideal I of B is contained in a maximal regular ideal.

The following theorem is well-known (cf.,, e.g., [17]):

If a commutative semi-simple symmetric Banach algebra is regular and
the set of elements x in B such that supp is compact is dense in B, then
B has the Tauber-Wiener property.

Thus proposition 5.8 and corollary 5.10 yield the following

THEOREM 5.11. If G has polynomial growth, then the algebra A has the
Tauber-Wiener property.

From this we deduce

THEOREM 5.12. If G is a Lie group of polynomial growth, then for every
t > 0 each of the functions p, and P* is cyclic in L,(G).

Proof. By proposition 5.1 and remark 5.2, theorem 5.12 follows
immediately from the following

LeMMA 5.13. Let {Q,}, t > 0, be a family of functions in A such that
Qf =@, forall t>0,
Q.xQ;, =Q,.y for all s,t>0,
lim|f«@,—fll, =0 for all f in L,(G).

t—0

Then for each t, > 0 the function @, is cyclic in L,(G).

9 — Colloquium Mathematicum XXXI.2
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Proof. Let J be the closure of L,(G)*@,,. Then J is a closed left
ideal in' L, (@). Suppose J # L,(G). Then, since for every sequence #;,—0, Q,J,
form an approximate identity in L, (@), there is an s, > 0 such that, for
8 < 8,, the functions @, do not belong to J. Consequently, I =JNA4 is
a proper closed ideal in A. By theorem 5.11, there is a homomorphism
7 #0 of A into complex numbers such that x(I) = 0. Consequently,

But then for all natural numbers »
x(Qtolﬂ)n = x(Q‘o) = 0’

which shows that all functions @,, (» =1,2,...) belong to M =
= {f: x(f) = 0}, which is impossible because M is a proper ideal in A
and @, (» =1,2,...) form an approximate identity.

« From theorem 5.12 we deduce a theorem of tauberian type for solutions

of the heat equation (or the Laplace equation) on a Lie group of polynomial
growth in the same manner as the classical Wiener’s tauberian theorem
is deduced from the fact that L,(R) has the Tauber-Wiener property

(cf., e.g., [14], p. 228-229).
THEOREM 5.14. Suppose for an f in L (G) the functw'n u(x, t) satisfies
the heat equation

0
Lyu(x,t) = e u(z,t)

with the boundary condition
w(z,0) = f(x), weG, and [u(,?)lleo < [Iflly-
If @ is of polynomial growth, then the following implication holds:

(5.26) if, for a ty, limu(x, t,) exists and equals a, then for every g in L,(G)

00

lim g f(z) = a [ g(x)ds

Similarly, we have
THEOREM 5.14°. Suppose that for an f in L (Q) the function u(z, t)

satisfies the Laplace equation
2

Lyu(x,t) = —Et?u(w,

with the boundary conditior,

u(x, 0) =f(.’1?), .’L‘GG, and |Iu(7x)“oo<“f”°o
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If G is of polynomial growth, then the following implication holds

(6.27)  if, for a ty, limu(x, t,) exists and equals a, then for every g in L, (@)

—>00

limg=x* f(z) = afg(m)da:.
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