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1. Introduction. In [4] Frink generalized Wallman’s method of compac-
tification. Frink used a normal base of closed sets instead of the family of all
closed sets as employed by Wallman. Frink posed the question whether all
compactifications are obtainable by using suitable normal bases. He also
asked which compactifications can be obtained from normal bases consisting
of zero-sets. Frink observed that each compactification cX of X determines a
normal base for X, consisting of the zero-sets of those continuous real-valued
functions defined on X which may be extended to continuous functions over
cX. This theorem was proved by Biles in [1]. In [4] Frink also cited an
example showing that Wallman’s method applied to the zero-sets of func-
tions continuously extendable to cX does not necessarily yield cX (see also
[2], Major Problem 8.12).

In this paper, we shall be primarily concerned with those compactifica-
tions cX of a space X for which the Wallman space determined by the family
of all zero-sets of real-valued functions continuously extendable to cX is a
compactification of X equivalent to cX. Next, we consider the spaces X for
which every compactification cX can be obtained as the Wallman space
determined by the zero-sets of continuous real-valued functions defined on X
and continuously extendable to cX, and the spaces X for which only X is
obtainable in this manner. Most of our theorems are formulated in the
language of rings of functions.

2. Definitions and basic properties. Let X be a Tychonoff space. The ring
of all continuous functions from the space X into the space R of real
numbers is denoted by C(X) and its subring of all bounded functions is
denoted by C*(X).

A subring P of C*(X) is called a complete ring of functions on the space
X if P contains all constant functions, separates points from closed sets (i.e.,
for any closed set F and for any xeX\F there is an feP such that
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f(x)¢clg f(F)), and is closed with respect to uniform convergence. The family
of all complete rings of functions on the space X will be denoted by P(X).

Let K (X) be the family of all classes consisting of equivalent compactific-
ations of X. For compactifications ¢, X and ¢, X, we say that ¢, X <c, X if
there is a continuous mapping q: ¢, X = ¢, X for which goc, = ¢,, where ¢,
and c, are homeomorphic embeddings of X in the corresponding compactific-
ations. By assigning to any compactification c¢X the ring P € P(X) consisting
of all functions continuously extendable to cX, we establish an isomorphism
of the partially ordered set (K(X), <) onto the partially ordered set
(P(X), <).

For any feC(X), the set f~'(0) is called the zero-set of f. If P is a
subring of C(X), we put

Z[P]=f""(0): fePj;

Z[C(X)] = Z[C*(X)] is denoted, for simplicity, by Z (X).

Let PeP(X). We shall denote by wZ [P] the space of ultrafilters of
Z [P] with the Wallman-Frink topology (see [4] or [2], Section 8). From
Theorems 2.6 and 3.9 of [1] (see also [5], Problem 7M, and [3], Problem
3.12.21(e)) we obtain

2.1. TueOREM. For each P e P(X), wZ [P] eK(X). Moreover, for the com-
pactification cX corresponding to the ring P, we have cX < wZ[P].

If PeP(X), then the compactification wZ [ P], in general, is not equival-
ent to the compactification of X corresponding to the ring P. R. M. Brooks
observed that if X = N is the space of positive integers, wX is the one-point
compactification of X and PeP(X) is the ring corresponding to wX, then
wZ [P] = BX # wX (see [4] or [2], Major Problem 8.12). The next theorem
is an immediate consequence of Theorems 2.6 and 3.8 of [1].

2.2. THEOREM. Suppose that PeP[X] and cX is the compactification
corresponding to the ring P. Then cX = wZ [P] if and only if

ckxZyNeclxZ, =0

whenever Z, "Z, =Q and Z,, Z,€Z[P].
The proof of the following lemma can be obtained by a slight modifica-
tion of the proof of Corollary 3.6.2 in [3].

2.3. LEMMA. For each PeP(X) and any disjoint subsets A and B of X,
the following conditions are equivalent:
(i) cl.x A ncl.y B=Q, where cX is the compactification of X correspond-
ing to the ring P;
_(ii) there exists a function f € P such that

Acf 10 and Bc<f ().
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Two subsets 4 and B of X are said to be separated by the ring P € P(X)
if there exists a function f € P such that A = f~1(0) and B = f~!(1); we then
say that P separates A and B. Subsets A and B of X separated by the ring
C*(X) are called completely separated.

Denote by B(X) the subfamily of P(X) consisting of all rings P e P(X)
with the property that any disjoint sets Z,, Z, eZ [ P] are separated by the
ring P. Let us observe that the family B(X) is non-empty because
C*(X) e B(X).

Theorem 2.2 and Lemma 2.3 imply

2.4. COROLLARY. Let PeP(X) and let cX be the compactification of X
corresponding to the ring P. Then cX =wZ [P] if and only if PeB(X).
We shall now establish an algebraic characterization of the ring

P, eP(X) corresponding to the compactification wZ [ P]. Before doing this,
however, we shall prove two lemmas.

25. LEMMA. Let X be a dense subspace of a topological space T and f a
continuous mapping of X into a compact space Y. The mapping f has a
continuous extension over T if and only if there exists a base F for closed sets
in Y satisfying the conditions:

(1) F is closed under finite intersections;

(i) clp f~Y(Fy) ncelp f~1(F,) = O for each pair F,, F, of disjoint sets
from F.

Proof. The necessity is obvious.

Sufficiency. Let B, and B, be disjoint closed subsets of Y. By
Theorem 3.2.1 of [3], it suffices to prove that

clr f~1(By) Nnelp f1(By) = 0.
We then have
B,=(F, and B,= () F,

seSy teSy
where F,, F,€.# for seS, and t€S,. Since

B, c Y\B, = | (Y\F),
teSz

it follows from the compactness of B; that there is a finite set
Wty ta, ..., t) © 8, such that

k

k
By U (Y\F)=Y\NF,

i i=1

Moreover,

k
B, = .Dl F,, < Y\B, = | (Y\F).

seSy
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k .
The set () F, is compact; hence there exists a finite set !s,, s;, ..., s =8,
i=1

such that

Da-

! 1
F,= U (Y\F,)=Y\ N F,,.
j=1 j=1

1

We put

k

. ]
Fi=(F, and F,=(F,
j=1 i=1

By hypothesis, F,, F,€.# and

clp f7H(F) nelp f71(Fy) = O.
Since f~'(B;) = f~!(F;) for i =1, 2, we have

cly f~1(By) el f71(By) = .

Let us note that the assumption that the base .# is closed under finite
intersections is essential in the last lemma.

2.6. ExampLE. Denote by T the interval [0, 1] with the natural topolo-
gy; let X =T\, and Y = {1, 2, 3] with the discrete topology. Let
f([0,Y)=11} and f(3 1])={2}.
The family
F=1{2,3), 11,3}, {1, 2}, {1, 2, 3}}

is a base for closed sets in Y (that is not closed under finite intersections)
and the implication

(Fy, FeF AFynFy=0Q)=cl f (F)ncly f~1(F) =0

is valid. However, the mapping f is not continuously extendable over T.

We shall now show that the ring corresponding to the compactification
wZ [P] is the least element of P(X) (with respect to the partial order on the
family P(X) given by inclusion) which separates any two disjoint members of
Z[P].

For each PeP(X), let S(P) be the collection of all rings S € P(X) such
that S separates each pair of disjoint elements of Z [P], and let P, e P(X) be
the ring corresponding to the compactification wZ [P].

2.7. LemMA. For each PeP(X),
P,eS(P) and P,=(\{S: SeS(P)}.
Proof. Let W =wZ[P]. It is known that
cwZ,nclyZ, =cly(Z,nZ,) whenever Z,,Z,e€Z[P],
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from Lemma 2.3 we infer that
P,eS(P) and (){S: SeS(P)} < P,,.

Now, let SeS(P) and let sX be the compactification corresponding to
the ring S. Consider the embedding iy of the subspace X in the space W. We
shall check that iy has a continuous extension over S.

The family |cly Z: ZeZ[P]) is a base for closed sets in W and is
closed under finite intersections. For any Z,, Z,€Z[P], if cly Z, ncly Z,
=@, then Z, nZ, = Q; since S €S(P), by virtue of Lemma 2.3, we infer that

C]sle mC]stZ = @

From Lemma 2.5 it follows that the mapping iy is extendable to a con-
tinuous mapping of sX onto W. Thus,

W<sX, P,cS and P,c(\{S: S(P)}.

For E c C*(X), let [E] be the ring generated by E (ie., [E] is the
common part of all subrings of C*(X) containing E).

28. THEOREM. For PeP(X) and

] ) )
= : f, nd f~1 10 =0;,
E {|f|+'glfge1>a F710) g1 (0 a)}

we have the equality P, = m, where m is the closure of [E] in C*(X) with
the topology of uniform convergence.

Proof. By Lemma 2.7, it suffices to show that [—E_jeS(P) and E c S for
each S eS(P).

Since P contains all constant functions, every constant function belongs
to [E]. The family Z [P] is a base for closed sets in X; thus, if H is a closed
set in X and xeX\H, then there is an feP such that H < f~1(0) and
x¢f~1(0). The function h=|f|/(|f|+1) is an element of E, and
h(x)¢clgh(H); hence E separates points from closed sets. We conclude that
[E] eP(X), and this — together with the definition of E — implies that
[E] €S ().

Now, consider S €S(P) and let sX be the compactification corresponding
to the ring S. Let

/]
k = ,
If1+1gl
where f, geP and f ~'(0) ng~'(0) = O, be an element of E. The family # of

all finite unions of disjoint closed intervals contained in [0, 1] is a base for
closed sets in [0, 1] and is closed under finite intersections. If [a, b] is an
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interval, then the set

k™'([a, b]) = {x: |[f(0)|=b|f(x)|-blg(x) < 0}
Ax: | f () —alf (x)|—alg(x)| = 0}

belongs to Z[P] (see [5], 1.10 and 1.11). Thus, k~!(F)eZ [P] for each
Fe.#. Since SeS(P), from Lemmas 23 and 2.5 it follows that k has
a continuous extension over sX and, consequently, k€S and E c §.

29. THeoreM. For each P eP(X), we have the equality Z[P] = Z[P,].
_Proof. Let m be the ring defined in Theorem 2.8. We prove that
Z[[E]] = Z[P].
If he[E], then
I A LR
h= LAY L L7 L
.;1 1131 | £+ gl i=§+l j=1 1S +1g:4
for some f; g,;€P such that f;'(0)ng;'(=0 (=1,2,...,m
j=1,2,..., m). Arguing similarly as in the proof of Theorem 2.8, one

can easily see that for any real number r the set |x: |h(x)] <r} belongs to
Z[P)

If hefE_], then there exists a sequence (h,) of functions from [E]
uniformly convergent to h. It can be assumed that

lh(x)=h,(x)| < 1/n

for each xeX and n=1, 2, ... Let us observe that

x: h(x) =0} = () {x: k(0] < /n};
1

since {x: |h,(x)) <1/n}eZ[P] for n=1,2,..., we have h~'(0)eZ [P] (see
[5], 1.14(a)). Therefore, Z[[E]] = Z[P].
From T_heorems 2.1 and 28 it follows that Z[P]cZ [[_Ej] Thus,
Z[P1=Z[[E]] =Z[P.]
2.10. CoroLLARY. For each PeP(X),
P,eB(X) and P,=()\SeB(X): PcS}.

Proof. The first part of the proposition follows from Theorem 2.9 and
Lemma 2.7. But

\SeB(X): PcS} cS(P),
and we complete the proof by applying Lemma 2.7.

3. The family B(X). In this section, we are going to study the spaces X
for which B(X) = P(X) and those for which B(X) = |C*(X).
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First, we present the following generalization of a well-known result
concerning the Cech-Stone compactification:

3.1. TuEOREM. Let PeB(X) and let cX be the compactification corre-
sponding to the ring P. Each non-empty closed Gset in cX disjoint from X
contains a copy of BN, and thus has at least cardinality 2.

Proof. Assume that F c cX\X is a non-empty closed G;-set in cX.
There exists a continuous function f: ¢X —[0, 1] such that F = f~!(0). Let
(a,) be a sequence of points of X such that

f@)>f(a,.,) for n=1,2,..., and lim f(a,) =0
(see [3], the hint to Exercise 3.6.G(a)). We put M = la,, a,, ...} and f = fly;
clearly, f € P. Observe that if A = M, then the set f ~'[f(A)] is an element of
Z[P], and
ST (AINM = A,

Indeed, if A = M, then f(A)u {0} is a closed subset of the interval [0, 1],
and thus f(4) L {0} = h~'(0) for some function heC ([0, 1]). The function
g=hof belongs to P, and since f~'(0)nX =@, we have g~ '(0)
= f~'[f(A)]. We conclude that each subset of M is a zero-set in M, so M
is a copy of N. Moreover, if A, B is a pair of disjoint subsets of M, then the
sets f "' [f(4)] and f~' [f(B)] are disjoint members of Z [ P]; by hypothesis
and Lemma 2.3, we obtain

cl.xAnclxB=0.

Thus, cl.x M is homeomorphic to BN (see [3], Corollary 3.6.4). To complete
the proof, it suffices to observe that cl., M\ M c F (see [5], 6.10(a) and 9.3).

3.2. CoroLLARY. If PeB(X), then no point of the remainder of the
compactification cX corresponding to the ring P is a Gs-set in cX.

3.3. TueoreMm. B(X) = P(X) if and only if the remainder of BX does not
contain non-empty closed Gs-subsets of BX.

Proof. Necessity. Assume that F c X\ X is a non-empty closed
Gs-subset of BX. Let cX be the quotient space obtained from BX by
identifying the set F to a point. Clearly, cX eK(X) and the one-point set
\F} ccX\X is a Gsset in cX. From Corollary 3.2 it follows that the ring
corresponding to the compactification cX does not belong to B(X), which is
a contradiction.

Sufficiency. Now, assume that PeP(X)\B(X). By Lemma 2.3, there
exist functions f;, f, € P for which

(1 HA'0nf;'(0=0 and Clcxff'(o) Nelx f71(0) # O,

where cX is the compactification corresponding to the ring P.
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For i =1, 2, let f,eC(cX) be an extension of f;. Then, by (1), the set
Z = fi1(0) n f; '(0) is a non-empty zero-set in cX contained in the remain-
der of cX.

Let g: BX —=cX be a continuous mapping such that gof = c. Hence
the set ¢~ '(Z) is a non-empty closed G;-subset of fX. Since

g '(cX\X)=BX\X and ZccX\X,

we have ¢~ '(Z) < BX\ X, a contradiction.

Since a Tychonoff space X is pseudocompact if and only if the remain-
der X\ X does not contain non-empty closed Gs-subsets of BX (see [3],
Exercise 3.10E), we have

3.4. CoroLLARY. B(X) = P(X) if any only if X is a pseudocompact space.

The Wallman-type compactifications which arise from normal bases
consisting of zero-sets are called z-compactifications. From Corollary 2.4 it
follows that if P eB(X), then the compactification of X corresponding to the
ring P is a z-compactification. In [8] A. K. Steiner and E. F. Steiner proved
that the Alexandroff compactification is a z-compactification. In particular,
the one-point compactification wN of N is a z-compactification; however, the
complete ring of functions corresponding to wN is not an element of B(N).

From Corollaries 24 and 3.4 we obtain

3.5. CoroLLARY. If X is a pseudocompact space, then each compactifica-
tion of X is a z-compactification.

In the sequel, we shall use the following

3.6. THEOREM. A Tychonoff space X has the Lindelof property if and only
if, for each compact subset F — BX\ X, in BX there exists a compact Gs-set H
such that F < H c BX\ X ; moreover, in the above characterization, X can be
replaced by any compactification of X (see [3], Problem 3.12.24(a)).

We say that the space X is almost compact if it has a unique (up to
equivalence) compactification (see [7]).

3.7. LemMa. If B(X) = {C*(X)!), then the space X is either Lindelof or
almost compact.
Proof. Assume that the space X has more than one compactification

and is not a Lindelsf space. By Theorem 3.6, there exists a closed set
F c X\ X for which

(2) there is no Ga-éubset H of BX satisfying F c H c X\ X.

Since card(BX\ X) = 2 (see [3], Problem 3.12.16(a)), one can assume that
card(F) = 2. Then the quotient space cX = fX/A, where .# is the equival-
ence relation determined by the decomposition of X into the set F and one-
point subsets of BX \F, is a compactification of X and is not equivalent to
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BX. Let P be the ring of functions corresponding to cX. Clearly, P # C*(X).
We shall prove that P eB(X).

Assume that P¢ B(X). From Lemma 2.3 it follows that there exist sets
Z,, Z,€Z[P] such that

Zl ('\Zz=® and CszlmCl‘.x22¢®.

We know that clyx Z, Nnclgx Z, = @. Thus, from the definition of the space
cX we obtain

clxZ, nclxZ, = |F}.

Let f;, f,€P and Z;, = f.,"1(0) for i = 1, 2. The functions f; are extendable to
functions fieC(cX) (i =1, 2), and

clxZ, nelxZ, < f71(0) A f571(0).

The set H=f,'(0)nf;'(0) is a closed G,-subset of cX, and FeH. The
union H of all equivalence classes belonging to H is a closed G-subset of fX
such that F <« H < BX\ X. This contradicts (2).

38. LemMa. If PeB(X) and Z[P] = Z(X), then P = C*(X).

Proof. By hypothesis, P €S(C*(X)). Applying Theorem 2.1 and Lemma
2.7 we deduce that C*(X) < P and P = C*(X).

39. LEMMA. If the space X is either Lindelof or almost compact, then
B(X) = {C*(X)}.

Proof. In [7] Henriksen and Johnson proved that if X is a Lindelsf
space contained in a compact space Y, then for each heC(X) there is an
f€C(Y) such that h~1(0) =f~'(0) » X. Thus, for any Lindelsf space X and
P e P(X), we have the equality Z[P] = Z(X). The equality B(X) = {C* (X))
follows from Lemma 3.8.

Clearly, if X is an almost compact space, then B(X) = |C*(X)}.

3.10. TueoreM. For any Tychonoff space X, the following conditions are
equivalent:

() B(X) = |C*(X)};

(ii) for each Pe€B(X), we have Z[P] = Z (X);

(iii) for each PeP(X), we have Z[P] = Z (X);

(iv) for each P eP(X), we have wZ[P] = BX;

(v) for each PeB(X), we have wZ[P] = BX;

(vi) the space X is either Lindelof or almost compact.

Proof. Implications (i) = (iii) and (iv)=>(v) are obvious. Since wZ(X)
= BX, implication (iii) = (iv) holds. The equivalence of (i) and (vi) follows
from Lemmas 3.7 and 3.9. To complete the proof, it suffices to show that (v)
implies (i). '

If PeB(X) and wZ [P] = BX, then, by Corollary 2.4, the compactifica-
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tion of X corresponding to the ring P is equivalent to the Cech-Stone
compactification; therefore, P = C*(X) and B(X) = {C*(X)}.

3.11. Remark. In [6] Hager and Johnson considered the subrings .o/
of C(X) which contain all constant functions, separate points from closed
sets, are closed with respect to uniform convergence and are closed under
inversion (i.e., if fes/ and f~'(0) = @, then 1/f €2/); those subrings are
called algebras on X. One can easily check that the conditions in the above
theorem are equivalent to the property “C(X) is the only algebra on X~
(see [6], Theorem 3).

Finally, let us observe that the converse of Theorem 3.1 does not hold.
Indeed, if X is a non-compact Lindeldf space, z, and z, are distinct points of
BX\ X, cX is the quotient space obtained from X by identifying the set
121, Z,} to a point and P € P(X) is the ring corresponding to the compactific-
ation cX, then, by Theorem 3.10, P¢ B(X); however, each non-empty closed
G;-set in cX, contained in the remainder cX \ X, contains a subset homeo-
morphic to BN.
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