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FUNCTIONS HAVING STATIONARY CONSTANT SETS
BY

GREG G. GIBBON (ST. LUCIA)

A function f: x —x is regressive on x if f(x) <a for all & # 0. In this
paper, we investigate a generalization of the classical result of Fodor which
states that there is always a stationary set on which a regressive function is
constant. We develop conditions that guarantee a stationary constant set for
a function f: x —[%]<* for some cardinal A.

Further, we investigate a similar generalization of the results of Jech
concerning regressive functions on the set [p] *.

1. Introduction and notation. A subset C of the cardinal x is said to be
unbounded in x if for all « < 4 there is y in C with y > a. The subset C of x is
said to be closed in x if whenever B = C, then () BeC U {x}. If x is regular, it
is easily seen that the intersection of any family of fewer than x closed
unbounded subsets of x is itself closed and unbounded in ». A subset S of »
is said to be stationary in x if S intersects every closed unbounded subset
of x.

The following theorem is a classical result of Fodor [1]:

THEOREM 1.1, Let x be a regular cardinal greater than WX, and let f: »
—x have the property that f(a) <a for all non-zero a in S, where S is some
stationary subset of x. Then there exists a stationary subset T of S such that
f is constant on T.

We will call such a set T a constant set with respect to f, and in Section
2 we will investigate the following generalization:

For a given cardinal x, for what values of the cardinal A will every
function f: S —[%]<* with the property that f(x) =« for all a in S, where S
is a stationary subset of x», have a large constant set?

In Section 3 we investigate a similar generalization of a theorem of Jech.

Our notation is conventional. We use %, 4, n, 6, and 6 for infinite
cardinal numbers. Other lower case Greek letters will denote ordinal num-
bers. The cardinal numbers are identified with the initial ordinals in the
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usual way. We use o’ to denote the cofinality of a for a being an ordinal or
cardinal number. The cardinal » is said to be regular if »x' = x, otherwise
singular. We denote the cardinal successor of »¥ by x*, and the ordinal
successor of a by a+1. Let [A]<" denote the set {B = A4; |B| < n}, and let
[4]<" and [A]" have the obvious meaning. Let

fIX]1={f(x); xeX},
and let PX denote the powerset of X. Finally, let

STH A ={a;f(@) =
and let f|X be the restriction of the function f to the set X.

2. Functions on ordinals. We will need the following lemmas:

LemMA 2.1. Let A be an infinite cardinal and let {f,; o < A} be a strictly
increasing sequence of ordinals. Put

6=U{Baa a <)'}

Then &' = A'.

Proof. The map 4 — 4 defined by a — f, is order-preserving and cofinal
in J, and so clearly there is a map r: A’ =46 which is order-preserving and
cofinal in 6. Hence &' < 4.

For a contradiction, assume that 6’ <A'. Let f: 6’ =& be cofinal in é.
Define h: ' =1’ by h(x) =y, where y is the least ordinal such that r(y)
= f (o). Now, h is cofinal in A’, since given y < A, r(y) < &, and so there exists
a < ¢’ with f(a) = r(y). Hence h(x) = y, since r is order-preserving. Since ¢’
< A" and 1’ is regular, we have the required contradiction.

DEFINITION. Let P, denote the subset of the infinite cardinal x de-
fined by

Py=1la <x;a =6}.

Clearly, P, is empty when 6 is not a regular cardinal.
LEMMA 2.2. If 0 is regular and w < 0 <x', then P, is stationary in x.

Proof. Let C be a closed unbounded set in ». Define {f,; a <60} as
follows. Choose any f,€C. Choose B,., €C with B,,, > B,. For 7 being a
limit ordinal, put B, = | {f,; « <y}. Then B, €C since C is closed. So f,€C
(since 8 <x') and By = 6, since Lemma 2.1 applies. Hence f,€C N P,.

We are ready to consider the case where » is regular:

THEOREM 2.1. Let x be a regular cardinal greater than N, and let A be a
cardinal such that ¢* <x whenever o is a cardinal less than x.

Let f: S »[%]<* have the property f(a) <o for all o in S, where S
satisfies the following property: ' _

For some regular cardinal 0 satisfying A* < 0 <x, there is a set F closed
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and unbounded in x» such that
(X sFA(UX) =0)=UXeS.

Then there is A in [%]<* such that f~'(A) is stationary.

Proof. For a contradiction, suppose that f~!(X) is non-stationary for
all X in [x]%* Thus for each X in [x]<* we infer that f~!(X) is not
stationary, and hence there is a closed and unbounded set Cj satisfying

Cxnf~1X)=0. Put
D= {a <x;aeN{Cyx; X ga}}.

We will show that DN S # @, and this contradicts that f(x) ca for all
a in S.

Define {f,; « < 0} inductively as follows:

Choose B, €F, where F is the closed and unbounded set guaranteed by
the hypothesis. If a is such that g, is defined, choose f,,, such that
B.+1 > B, holds and

B.+1€N{Cx; X €B,} NF.

This choice is possible since |[8,]<* < x, and so there are less than x sets X,
and so we have an intersection of less than x closed unbounded sets, which is
itself closed and unbounded. For a limit ordinal y such that §, has been
defined for all « <y, define B, by

By = U {Bs; a <9}

Clearly, B, €F.

Put 6 =By =) {f.; @ <0}. Then 6 <%, and & =60 from Lemma 2.1,
and so d €8, since B, €F for all a < 6. It remains to show that é eD; that is,
given X <, then d €Cy.

If X <6, then X is not cofinal in J since A <6, and so there is o <0
such that f, <é and X < f,. Hence B,,, €Cy, by construction. Now we will
show that ¢ >a=f,eCy. We will use induction. We have f,,,€Cy.
Assume true for ¢ so B,eCy. Now,

Be+1€N{Cx; X =B.}.
But X =B, =8,, and so B,., €Cx. If ¢ is a limit ordinal, then
B. = UiBas @« <y <e},
and so B,eCy, since Cy is closed. Hence
d=U{B.; a <e <0} €eCy,

and the result follows. _
It is easily seen that for S to satisfy the hypothesis of Theorem 2.1, it is
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necessarily stationary. However, the following example shows that being
stationary is not sufficient:

ExampLe 2.1. Let n be a regular infinite cardinal with n < A. Then
putting S = P, we infer that § is stationary from Lemma 2.2. Write, for « €S,
f(@) = h.[n], where h,: n o is a function cofinal in a. This is always
possible since a’ = n by choice. Clearly, fis 1-1 on §, and so the result of
Theorem 2.1 is not possible.

The condition on the cardinal 4, i.e., 6 <x = ¢* < x for all cardinals o,
is shown to be necessary by the following example

ExaMpLE 2.2. Suppose there is ¢ < x with ¢* > »x. Then
I[61%% = 0* > x.
We will list [6]5* by [6]%* = |4,; a <o*). Define, for all a <x,

® for a <o,
A, for o <a <ux.

-]

Clearly, f(x) = a for all @ <%, but fis 1-1 on x¥—a, and so there is no
stationary constant set.

To conclude the case for » a regular cardinal, we will abandon the
condition on the cardinal A, putting A =, and impose conditions on the
function f that ensure the existence of a stationary constant set.

We will refer to the following conditions:

(1) Putting E, = {X€Px; X ca Adn<x (f(n) = X)}, we have |E,|
<x for all « in S.

Note. Since E, < E; when a < f, condition (1) implies that |E,| <x for
all a <x.

2 Uf(@) <a for all a in S.
Condition (1) is not satisfied by Example 2.2, since here

E,=XePx; X<co Adn<x (f(n) = X)
= A, a<x)uU|

and so |E,| = x.

Condition (2) is clearly not satisfied by Example 2.1, since for each a in
S we have f(x) = h,[n], and so |J f(#) = a, by construction.

Theorem 2.2 shows that the imposition of conditions (1) and (2) suffices
to ensure the result when A =x, also allowing a slight relaxation of the
condition on S.

THEOREM 2.2. Let x be a regular cardinal and let f: S = Px have the
property f(a) Sa for all o in S, where S = x satisfies:

For some regular cardinal 0 satisfying w < 0 <x, there is a set F closed
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and unbounded in »x such that
(X =sF A(UX) =0)=UXeS.

Then if f satisfies conditions (1) and (2) on S, there is A in Px such that
f~1(A) is stationary.

Proof. As in the proof of Theorem 2.1, assume that for each X in Px
the set £~ (X) is not stationary, and so there is a closed and unbounded set
Cy satisfying Cyn f~1(X) = 0.

Define {f,; a < 0} as follows:

Choose S, €F, where F is the closed and unbounded set guaranteed by
the hypothesis. If a is such that B, is defined, choose f,,; such that

Bc+1 >ﬂa and
B.i1€EN'X€ePx; X =B, AndAn<x (f(n)=X)! NnF.

By condition (1), there are less than x» such sets X, and so the choice is
possible. For a limit ordinal y such that B, has been defined for all a <7y,
define B, by B, = U {B.; « <y}. Clearly, B, eF. Putting 6 = f,, we have
<x and ¢’ =60 from Lemma 2.1, and so é €S. It follows from condition (2)
that () f(6) < 6. We will show that X =d= f(5) # X, and this contradicts
() <o.

Now, if X <4, we can assume that X is not cofinal in § (otherwise, by
condition (2), f(d) # X), and so there is a < 0 such that B, satisfies X < B,.
Clearly, either f(n) # X for all n <x or f(7) = X for some n < ». The former
case implies that f(d) # X and we are done. The latter case implies that
B.+1 €Cx. We claim that

e>a=f,eCy.

Proceeding inductively, assume that , eCy. Now,

ﬂz+1eﬂ{cx2 X gﬂe /\31’] <X (f('l)= X)l f\F
But X =B, <8, and f(n) = X, so B,+, €Cyx. For ¢ a limit ordinal,

and so B,eCy since Cy is closed. Hence
5= {B.; x <e <8}eCy,

and so f(6) # X. The proof is complete.
We have now covered all cases for. x being a regular cardinal. For
singular », we have

THEOREM 2.3. Let x and A be cardinals with x singular and A <x. Let n
< x be a regular cardinal greater than X, such that ¢* < n whenever ¢ < n for
all cardinals 6. Let S < x satisfy:
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For some regular cardinal 0 satisfying A* < 0 <n, there is a set F closed
and unbounded in n such that

(X <FA(UX)=0=UXEeS.

Then, if f: S = [x]<* has the property f (@) S« for all « in S, there is A
in [x]%* such that f~'(A) Nn is stationary in n.

Note. If we assume GCH and if S =%, then the statement of the
theorem simplifies to:

Let » and A be cardinals with x singular and A <x. Then, given any
cardinal less than x, there exists a larger cardinal n, with n <x, such that

f~Y(A) nn is stationary in n for some A in [x]<*.

Proof of Theorem 2.3. f|n satisfies the conditions of Theorem 2.1,
since f|n is a map S Ny =[]

We will conclude the case for » singular by showing that the result of
Theorem 2.3 is the best possible by constructing a function f: x —[3x]<?
with f () =« for all « < %, but with no constant set of size », and hence with
no stationary constant set.

Let {x,; o <x'} be a strictly increasing sequence of cardinals with
U {#4; 0 <%’} =% and with %, =0 and %, = x". Define F: x = by

Fla) = {x, ff ®, <& <Hyyy,

3 if x, =oa.
So F(x) <a for all « # 0. Put f(x) = {F («)}. Clearly, we have constant sets of
every power x,, but no constant set of size x.

3. Functions on sets of ordinals. Following Jech [2], we give definitions
of closed and unbounded subsets of [¢] “*, where [g] “* = {4 =p; |4] <x}.

Let x be a regular uncountable cardinal and let ¢ be an ordinal such
that ¢ > x.

DEeFINITIONS. A set D satisfying D = [p] =* is a chain if

D={P,; a <)

so that P =P, =...c P, <... for all « <.

A set C satisfying C =[] ~* is closed in [¢]=* if, for every non-empty
chain D such that D = C and |D| <x, the set (J{P; PeD} is in C.

-C is unbounded in [@] =* if for all P in [¢] * there exists Q in C such that
P < Q. A set S satisfying S < [o] “* is stationary in [@]* if SN C # O for all
closed and unbounded sets C such that C < [p]~*.

Let R = {Pe[0]<*; R < P}. Then clearly R is closed and unbounded in
[e]<* for all R in [@] "

The following is Theorem 3.2 (d) of [1]:
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THEOREM 3.1. If S is a stationary subset of [@] <* and f: S =0 has the
property that f(P)€P, then f is constant on some stationary subset of S.

We will investigate the following géneralization of Theorem 3.1:°

For a given regular uncountable cardinal x and an ordinal ¢ such that g
> x, for what values-of the cardinal  will a function G: [¢]<* =[] <" with
the property that G(P) = P for all P belonging to a stationary set, always
have a large constant set?

We will need the following lemmas:

LEMMA 3.1. The intersection of less than x closed and unbounded sets is
itself closed and unbounded.

For the proof see Theorem 3.2 (b) of [1].

Lemma 3.2. Let Q = {P,; a <0}, where P, = Py whenever a <p. Let
A<SQ and |Al <0 hold. Then there is an ordinal 6 such that 6 <0 and
A c P,

Proof. Define a function h: A -6 by h(a), being the least ordinal y
such that aeP, for all a in A. Since |A| < &', the range of h is not cofinal in
0, and so there is an ordinal § such that § <6 and h(a) < é for all a in A,
and hence A < P; holds.

LEMMA 3.3. Let A be a regular cardinal with o < A <x and let o' > x.
Put

S, = {Pelel™; (UP) =4}
Then S, is a stationary set in [g] =*.

Proof. Choose any closed and unbounded set C. It will suffice to show
that CnS; # @. Define inductively the sequence {P,; <4} as follows.
Choose P, from C. For an ordinal a for which P, is defined, choose P, ,
from C such that

P,u{UP)+1} =P,

This is possible by the unboundedness of C and the fact that ¢’ = » holds.
For a limit ordinal 7, define

P, = {Ps; a <y},
and so P,eC by closure. Note that
UPi=U{UPs; « <2},
and since the ordinals |) P, are strictly increasing, by Lemma 2.1 we have
(UP) =4 =4

Hence P, €S;.
We are now prepared to present sufficient conditions for a constant set.
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THEOREM 3.2. Let o' = x, and let G: [p]~* —~>[Q]"’ be a function with
the property that G(P) < P for all P in S, where S is a subset of [o]~* such
that, for some R in [¢] <* and some regular cardinal A with < 1 < x, we have
S; "R cS. Further, let n be a cardinal such that 6" <x for all cardinals o
with o <x. Then for some Y in [@]<" the set G~'(Y)NS is stationary in
[e] ™.

Note. If GCH is assumed and if we let S = [¢] =¥, then the statement of
the theorem simplifies to:

Let o' = x, and let n, A be cardinals with A regular, ® < A <x and n < A.
Then if G: [p]<* =[0]=" has the property G(P) < P, there is some Y such
that G~'(Y) is stationary in [@]<*.

Proof. Suppose G™'(X) NS is non-stationary for each X in [@]*".
Hence, for each X in [¢]<" there is some closed and unbounded set Cx such
that

CxnG ' (X)nS=0

holds. Inductively define a sequence {P,; a <A} as follows. Choose P, €R.
For an ordinal a for which P, is defined, choose P,,, from [o] “* such that

P,ul(UP)+1}cP,.;, and P, eNiCy; X SP,).
This choice is possible since
ILPS" < |PJ" <,

and so the above intersection is unbounded by Lemma 3.1. Also, U P, <g
since ¢’ = x holds. For a limit ordinal y with y <x, put P, = |P,; a <7y},
noting that P, is in [¢] **. Consider P,, noting as in the proof of Lemma 3.3
that P, €S,, and hence P, €S, N R, and so G(P,) = P,. Let X be a set such
that G(P;) = X. We will show that P,eCy. This contradicts -that
P,eG~1(X) NS since

CynG 1 (X)nS =0.

Now, |X| <n <4, and so by Lemma 3.2 applied to P, we infer that X < P,
for some § <4, and so P;,, €Cy by construction. We verify by induction
that P, eCy for all ¢ satisfying 6 <¢ < A. This is true, as above, if e =+ 1. If
P, eCy, then since

P,,;eN{Cxy; X<P) and XcP,cP,

we have P,,, €Cy. The limit case follows from the closedness of Cy. Hence
P, eCx and the required contradiction results.

The following example shows that the conditions on S are necessary:



STATIONARY CONSTANT SETS 229

Let G be as in Theorem 3.2 except that S = S, with 4 < n. Define G by
n lf X¢Sb
X' c X, where |[X|<nand X' =X if XeS,;.

Clearly, G(X) < X on S, but for each set X in [p]<" the set G~ (X) NS, is

not stationary, since choosing any Pe[@]~* with (U 4,)+1€P, it follows
that P is closed and unbounded but«

PG '(X)nS,=0.

This is true since if ZeG™'(X)NS,, then G(Z) = X, and so X = JZ, and
hence Z ¢ P.

G(X) =%
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