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DISJOINTING INFINITE SUMS
IN INCOMPLETE BOOLEAN ALGEBRAS

BY

ROBERT LAGRANGE (LARAMIE, WYOMING)

Let A = A4, +,+, —,0,1> be a Boolean algebra. The main result
in this paper® is a solution (negative) of Problem 1 of [1], which asks
whether every indexed set {a;: te1} < A with a supremum in 2 can
be disjointed (sece Definition 1). A weak form of disjointing is considered
and we give sufficient conditions under which an indexed set {a;: t<T}
can be disjointed or weakly disjointed.

We use m, n to denote infinite cardinal numbers, a, f to denote
ordinal numbers. S is the power of the set S. If h is a function, dmnh
and rngh denote the domain of h and the range of k, respectively. Boolean
algebras are denoted by 2, B, it being understood that A is the universe
of ¥ etc. We use } to denote sum (supremum). A Boolean algebra 2
is n-complete if Y D exists in 2 whenever D < A and D < n.

Definition 1. Let 2 be a Boolean algebra, {a;: teT} = A and
a= Da;. We say that {a;: teT} can be disjointed provided there is an

tel’
indexed set {h;: teT} = A satisfying:

(i) by < ay for each teT,

(i) th = ilh,

teT
(iii) {b;: teT} is disjoint, namely if ¢, seT and ¢ 5 s then b;-b, = 0.
It is well known (') that if @ = ) a; holds in U, and if 2 is n-complete

1eT
for every cardinal n < 7', then {a;: t<1'} can be disjointed. In particular,

{a;: teT} can be disjointed whenever 7' is countable. Recall that for
an infinite cardinal m, 2 satisfies the m-chain condition if every disjoint
subset of 2 has power << m. Theorems 2 and 4 are known (folklore) and
are included for motivation.

* It constitutes a part of the author’s Doctoral Dissertation, done at the
University of Colorado under the direction of D. Monk.
(1) For a proof of this fact see Sikorski [2], p. 69.
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THEOREM 2. Every infinite Boolean algebra 2 contains an infinite
disjoinl subset.

Proof. For each aeA, let ¢(a) be the power of the set {x: wed,
x < a}. We define two sequences <a,: n < o) and ¢b,: n<< w) of ele-
ments of A as follows:

a, is any element of 4 except 0,1, then either ¢(a,) or ¢(—a,) is
infinite because for aeA,a = a-a,+ a-— a,. If ¢(a,) isinfinite let by = — a,;
then b, # 0. Inductively agssume we have defined {a;: ¢ <<n) and {b;:
:1 < n) such that 0 # b; << —a,, for each ¢<<n, and b;-b; =0 for 2 <j
< n, and also ¢(a,) is infinite. Now let a < a,,, @ # 0, a,, and as before
either ¢(a) or ¢(a,-—a) is infinite. Say ¢(a) is infinite; then let b,
=y —a, . =a. Now for i<n+1, 0 b < ayyy, by #0, and
bi*b; =0 for i<<j<m-+1. Hence {b;: ¢<< w} is an infinite disjoint
subset of A.

LEMMA 3. Let 2 be a Boolean algebra and let a — Y ay # 0 in 2.
teT

There is a disjoint set D of nonzero clements of A satisfying:

(i) for each del) there is a tel such that d < a,

(i) & = X d.

deD

Proof. Let M = {xed: x # 0 and x < ¢; for some te1'}. By Zorn’s

Lemma let D be a maximal disjoint subset of M. To prove that a = }'d,
deD

suppose beA, b # 0 and b < a. Since a = > a;, there is a te7 such that
teT

bra; 0. Now b-a;eM, so by the definition of D, there is a deD such
that (b-a;)-d + 0, thus b-d -+ 0. Thig, together with the fact that for
each deD there is a teT such that d < a; < a, proves that a = Y d.
deD

THEOREM 4. A Boolean algebra 2 satisfies the m-chain condition
if and only if whenever a = Y a; holds there is a set S < T with §<m
and a = Y a,. e’ '

teS

Proof. Assume 2 satisfies the m-chain condition, and that «

= 2”’! +# 0. Choose a disjoint set D satisfying the conclusion of Lemma 3;
teT=
then D << m. For each deD, let f(d)eT be chosen so that d < a;4; then
let S = rngf. Now S<m and a = Y a follows from a = }d.
teS deD

Conversely, if 20 does not satisfy the m-chain condition, let F be
a disjoint subset of 2l having power > m. F can be extended to a maxi-
mal disjoint set 7' by Zorn’s Lemma. Then 1 = ) a, and clearly there

aeT

does not exist a set S = 7T with the required properties.

TurorREM 5. Let 2 be a Boolean algebra, let a, a;e A for tel', and

a = Ya. If there is a cardinal m such that
teT
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(i) for every seT, {teT: a; < a;} has power at least m,

(ii) 2 satisfies the m-chain condition,
then {a; : t<T} can be disjointed.

Proof. By Lemma 3 we choose disjoint set D < A satisfying
N'd = a and for each deD there is a 7' such that d < a;. By hypoth-

deD

esis D < m, so we write D = {d, : a<< 5 <m}. Define a one-to-one
function heT” as follows: h(d,) is any teT such that d, < a;, and if h(d,)
is defined for a << f << 7 so that d, < @y, for each a < fand h|{d, : a < i}
is one-to-one; then let h(dg) be any tel' such that dz < a; and t¢{h(d,):
a < B}. h(dg) exists because, by hypothesis {f : dg < a;} has power =>m
whereas {h(d,): a< fp} has power < m. Finally we define for each t¢T,

; d 1in case h(d) =1,
o it t¢rngh.
b, is uniquely determined because h is one-to-one. Now for terngh,
by = d < apgy = ay, and for t¢rngh, b, = 0 < a;. Moreover

th — Zd = il
‘ deD

tel

This proves that {a; : teT} can be disjointed.
COROLLARY 6. Let a = Y a; in 2, and let T — m. Assume
teT
(i) {a; : teT} is linearly ordered by the Boolean inclusion,
(ii) no set S < 1 satisfies simultaneously S<m and a = Day,
teS
(iii) 2 satisfies the m-chain condition.

Then {a; : teT'} can be disjointed.

Proof. To show that the hypotheses of Theorem 5 are satisfied,
note that for any seT', a = Y {a;: a; < a;} because {a;: teT} is linearly
ordered. Then {t : a, < a;} has power m by (ii).

LeMMA 7. Let a = Y a, in A, let F be the set of non-void finite sub-
teT

sets of T, and for each fek let by = Y a;. Then a = Dby,
tef fef
Proof. Clearly b; < a for each feF', so a = }'b; follows from a; = by,
for each tel'. feF

Definition 8. Let a, {a; : te1'}, {b;: fel'} be as in Lemma 7. We
say that {a;: teT} can be weakly disjointed if {b;: feF} can be disjointed.

TurorEM 9. Let a — Y a;in U; if T = m and 2 satisfies the m-chain
teT’
condition, then {a; : teT'} can be weakly disjointed.
Proof. For f, geF, a,<a; if g< f, thus since T =m, {feF: a, < a;}'
has power m for every geF. Hence Theorem 9 follows from Theorem 5.

Colloquium Mathematicum XVII2 8
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The hypothesis that 2 satisfy the m-chain condition in 5, 6 and 9
cannot be omitted. The Boolean algebra B and the indexed set {—-ah
ta << o} constructed below satisfy all hypotheses of 5, 6 and 9 except
the §,-chain condition, however {—a; : «< w,} can be neither dis-
Jointed nor weakly disjointed.

Definition 10. Let X be the set of all functions f satisfying

(i) dmn f is a successor ordinal a and a < w,,

(ii) rng f S w,.

For each geX, a, = {feX: f2g}. Let B be the Boolean set algebra
of subsets of X generated by {a,: geX}.

The requirement that dmn f be a successor ordinal will insure incom-
pleteness. Note that for g, he X, a, ~ a5 = a,_; in case g U h is a function
and a; ~ a = 0 otherwise. By (i) g u & is a function if and only if either
g<horhcg. Thus if beB and b + 0,1 (here 1 = X), then b can be
written as a finite union of sets each having one of the following forms:
Gy (2( Ag,)s g ﬂ 4,), where K is finite, K #0 and ¢, greX.

ke

Now a, ~ M ( ~agk) 7 0 if and only if there is an feX such that f =g
ke K ‘

and f $ g, for each keX, and this holds if and only if g 2 g, for all keK
(i.e. if and only if gea, ~ M (—ag,)). It will frequently be assumed that
keK

an expression a, ~ ﬂ(—%k) is reduced meaning that none of the sets

gy — g, contains anothel We now define the set {——ah ! a << w,} men-
tioned above.

Definition 11. For each a<< w,, let h,eX be defined by: (i) dmn &,
= a+1 and (ii) rngh, = {0}.
Lemya 12. 3 (—a) =1 in B.
a<<wy
Proof. If f<X, there is an ordinal f < w, such that dmm f< 3
then [ $ hy, so fe—arhﬂ. Thus X = (J (—ap,).
(1<0J1

In what follows we use the notation Db, #b to mean that either
tel’

th does not exists or th exists but is different from b.
te teT

LemMA 13. If I = w, and I is countable, then 2(—a) #1.
ael

Proof. Choose f< w; such that I < g, and consider hgy hg 2
for all ael. If feahﬁ, then f 2 hs; 2 h,, s0 fean,, thus fé—ap,. Thus

apy ~ —ap, = 0 for all ael and this proves that Zah 1.
ael

It follows from Lemma 13 that if {— ap,: @< o5 could be either
disjointed or weakly disjointed, then B would eontqm a maximal disjoint
set of power 8,. Tt will be shown below that B has no maximal digjoint
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subset of power ¥,. As a special case of our proof of this fact, if {g,:
a< o} € X, then } a, # 1 whether {a,: a< w,} i3 disjoint or not.

(l<(1)l
This follows because 0edmng, for each « << w; and there is a ﬂ< 0,
such that p¢ | rngg,. Let f be any element of X such that f(0) = f;
z/u)]_
then if hea;, we have h(0) = ﬂ, 80 h P ga, 80 h¢a, for all a < w,. Thus

ay N ag, = 0 for a< w,. Roughly this idea underlies the proof of the
next theorem. For geX, let u(g) denote the greatest ordinal in dmn g.
w(g) exists because dmn ¢ is a successor ordinal.

THEOREM 14. The Boolean algebra B of Definition 10 has no maximal
disjoint subset of power ¥,.

Proof. The proof is by contradiction and is divided into lemmas.
We assume that B does contain a maximal disjoint subset of power ;.
It follows that there is an indexed set {b;: iel} of distinet non-zero
clements such that T =¥8,, b; ~ b; = 0 for i,jel, ¢ #j, and each b;
is written in one of the forms: a,, a, mkﬂ —ag,)s kQ(—agik). It is

K; €y

further assumed that these expressions are reduced. In particular, we
note that —a, < —a; if and only if a; < a, and this holds if and only
it g <f, also a; & —a, if and only if a; ~ a, % 0 if and only if foyg
is a function.

LEMMA 15. There is exactly one jel such that b; = ﬂ(—agj.k).

keK ;

Proof. If no such j exists, then b; < a, for each iel and by the
special case considered above, '@, # 1, thus }b; # 1 contradicting
the assumption. i v

Conversely if i,jel, i #j and b; = ((—ag,), b = () (—ay,),

keK ; keK;
then choose few, such that g¢rngg;. for keK: and g¢rng g f(?)r keK;.
Now choose feX such that f(0) = . f(0) # ¢i(0) for keK;, so that
if heay, then b = f, so b 2 g, hence he—a,, . Thus a; = ﬂ(—agt.k) == B
keK
Likewise a; < b; so b; ~ b; 0 contradicting the dlbgomtne%s of {b;:

vel}.

LEMMA 16. Suppose b; is either a,, or ay, ~ () (—ag,) and b; is
keK ;

either Gy, OF Gy, ((— g, where i,jel. If © #j, then g; # g;.
keK?'

Proof. Assume g; = g;. Since b; # 0, b; # 0, and b; ~b; = 0,
the only mnon-trivial case occurs when b; = a,, ~ ﬂ —ag,.) and b;

=l M( — ;). But by the remarks followmg Deflnltlon 10 we
I('EK

have g;eb; and g;€b;, a contradiction.

LeMMA 17. For b = a, ~ ﬂ —a,,) in reduced form, b #+ 0, K # 0,

k

we have g < g, properly for mnh kel.
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Proof. Since b s 0, we have geb and ¢ £ g, for keK. Moreover,
w(g) < plgw), for if w(gz) < u(g), then dmn g, < dmn g. By assumption
a, £ —ag,, 50, by the remark preceeding Lemma 15, ¢g < gr 18 a func-
tmn, thus g, < g. Contradiction, hence u(g) < u(g;) for each kekK . Using
again the fact that o, & — —a,,, We have that g o g, is a function, so
9 < gr properly.

Definition 18. Let beB, {b; : jeJ} < B; we say that {b;j:jed}
covers b exxctly provided :

(i) If a<b, a + 0, there is a jeJ such that a ~ b; #0,

(i) b~ b; # 0 for all jed.

{b;: jed} covers b if (i) holds.

LEMMA 19. Suppose that a, is covered cxaclly by {b; : ied}, where
J<sI,d =y, Assume that each b; has as its reduced form either a,, or

Ay, N ﬂ —lgy.), and also that no countable subset of {b; : ied} covers ay.
keK;

Then there i8 @ unique jed such that a, < g,y and for this j we have b;
= Gy, N ﬂ (—ay,) with K; 0.

Proof. For ied, b; < a,, 50 {a,,: ted} covers a;, exactly; we have
ap ~ ag; #0, thus a, & —a,,. : :

Assume q;, ¢ ag, for all ieJ; then a, ~ —a, + 0. Since —a, & a
holds in general, it follows that @) ~ —a,, is in reduoed form. By Lemma
17, h < g; properly, thus for all ¢eJ, (u(h)--1)edmn ¢ ¢i- Choose ¢ Jrng g¢;

TS

and let f = h o {{u(h)+1, f>}. Then feX, and flu(h)+1) 4 gi(u(h)+1)
for every ted, 80 if gea;, then ¢ 2 f, 50 ¢ D ¢; so that qe—a,,. Hence
a; & —a, for every ieJ, and it follows that a, ~ ay, = 0. However
h < f, so that a; < a, a; 0 and this contradicts the fact that {ay,:
ieJ} covers ay. ‘

Hence for some jedJ, a; < g, - Also  b; £ @, by hypothesis, so
b; = a, ka (—ay,) with K; # 0.

|

Now assume 4, j eJ % #j and a,h S ay, ~ ag, Then 0 # a; ~ b;

= dp A G, mkﬂ U) = ap, nk(; )y SO that by the remarks
t €

following Definition 10 heay ~ b;. Likewise hea;, ~ b, S0 by ~ by £ 0,
contradiction. This proves the lemma. “

We now define a sequence (p,: n < o> of elements of X such that
Pn & Paga properly for each n < w, and ap, 18 not covered by any count-
able subset of {b;: iel}. Let ' be the unique element of 7 such that

b, :kﬂ (—ag,.,) by Lemma 15. X = b, ukU Agery @0d X is not covered
el

by any countable subset of {b; : iel}, because the b; are disjoint and
I = w,. 1t follows that for some keK; y ly,,. 18 10t covered by any count-
able subset of {b; : iel}. For any such k let po =gp-
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Inductively assume that py, pq, ..., pnare defined such that p,, < p,,.1
properly for 0 < m < n and that a, is not covered by any countable
subset of {b;: iel}. Let J, = {iel: ap ~ b; #0}; then {b;:ied,}
covers a, exactly. The hypotheses of Lemma 19 are fulfilled, so choose
Jedu, by = a,, nkQ (—ag,) and a, S a5, Also jed, is uniquely deter-

mined by @, < a,. By a straightforward set-theoretic calculation
we obtain: ‘

ay = ap (b o —by) = (ap, ~ ) o [ U (ag, ~ag)|
keKy' A

1t follows that for some ke Ky, a,, ~ a5, is not covered by any count-
able subset of {b;: ied,}. Also Up,, ~ Gg;p +#+ 0 so that p, v ¢; 1s a function.
Thus by the remarks following Definition 10, either p, S ¢;; OT gjx S Pn-
Now if gjx S P, then a, < a,, so that a, ~ —a,, =0, and it follows
that a, ~b; =0, contra,dlctmc the deflmtlon of J,. Thus g; £ pn,
S0 pn S g properly. Choose p, ., = ¢;x. It remains to show that Qg
is not covered by any countable subset of {b;: 7e/}. Assume that R < I,
R < ¥, and {b;: ieR} covers Qg oo Then {b;: ieR} covers a, ~ Oy Let
R = {ieB: b; ~ (ap, ~ ag,) #0}, then R’ < J, and R’<x0 and {b;:
iel'} covers a, ~ ag,, contradiction. Hence a,, is not covered by any
countable subset of {b,;: 1el}. Thus a sequence <pn: n < w) of elements
of X is defined such that, for each n <, py S pny, properly and a,
is not covered by any countable subset of {b;: ¢el}.

Now define S = (M a, , and let p = [ p,. We note that dmngp

n<w n<w

is a limit ordinal so that p¢X and § = {feX: f 2 p}. Let J = {iel:
b; ~ 8 # 0}. Smce 8 < ap,, '¢J, so for each ieJ, b; is either a, or

nkﬂ — @), thus b; < a,, each ieJ.
<Kj

LEMMA 20. For each jeJ, S & ag
Proof. Assume that for some ]EJ S < ay; then g;<p and in fact
u(gi)edmnp = () dmnp,. Let m be any natural number such that

n<w

u(g;)edmnp,. Then g; < p,, so that ap < a,. However J < Jp, so
jedm, and following the construction of p, ., from p, we see, by using

Lemma 19, that b; = a,, ﬂ gy aNd Poyy = G for some kel(;.

However, this implies that b ~ Qp,
dicting jeJ. This proves the lemma,

To complete the proof of Theorem 14 consider {b;:ieJ}. For each
ted, b; < ay, and by Lemma 20 8§ & a,, so that ¢; £ p. However,
bi ~8 #0 so that a, ~ 8 # 0, thus as before g¢; v p is a function.
Since ¢; € p, we have p < ¢; properly for every ieJ. Let a be the least
ordinal not in dmnp, in fact ¢ = dmnp. Then aedmng; for all ieJ.

=0, so that b, ~ § = 0, contra-
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Choose fél Jrngg; and ¢t = p o {{ua, 8>}; then teX, so that a,eB and
teJ

a; # 0. However, for each ied, ag, ~ @ =0, 80 that b;~a =0.
Also a; < 8, so that for ¢el—J, by~ ayf = 0, thus b; ~ a; = 0 for all
iel. This proves that {b; : ¢el} is not a maximal disjoint subset of B,
contradicting the original assumption. This completes the proof of The-
orem 14.

We remark that the main result of this section can be generalized
from ¥, to any regular cardinal. There are incomplete Boolean algebras
in which every sum can be disjointed, an example being the field & of

finite and cofinite subsets of an infinite set Y. Suppose a = )Y @, holds
tell’
in &. In case a; is cofinite for some teTl, there is a finite set S< T
such that a = Zat and as remarked after Definition 1, {a;: teS} can
teS
be disjointed. In case «a, is finite for all te7', choose a well-ordering <i,:

a<Ty of T, and let by = @, and by, = a;,— J a;, for 0 < f< T. Then
a<f

{bs: 1eT} is a disjointing of {a,: 1eT} even though |J a; is not, in general,
a<f &

an element of #. Also if 2 satisfies the 8,-chain condition, every sum
in 2 can be disjointed by Theorem 4.

Some problems are suggested.

ProBLEM 1. Find conditions, not involving completeness or the
N,-chain condition, on a Boolean algebra 2 under which every sum in 2
can be disjointed (P 612).

ProBLEM 2. Is there a Boolean algebra 2, and a set {a,: teT} < A

where D'a; exists such that {a;: teT} can be weakly disjointed but not
tel

disjointed ? (P 613)
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