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BY
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In a recent paper [5], L. 1i. Ward, following upon earlier work of Wal-
lace [3] and himself, has obtained a generalization of Borsuk’s fixed-
point theorem [1] which applies to any semi-locally connected continuum
equipped with a partial order which has certain properties in common
with the cut-point order. We shall show that close analogues of Ward’s
preliminary lemmas apply in any connected and locally connected Haus-
dorff space; in fact, owing to the simplicity of the structure of such a space
in relation to its cut-points, we can slightly relax the conditions imposed
on the partial order. It is of course impossible to prove a fixed-point
theorem, properly so called, for such spaces, as is shown by the simplest
examples; e.g. we may take the space {x; ¥ > 0} with the natural order
and topology, and consider the mappings defined by f,(z) = {x+1}
and f,(x) = {y;y = x+1}. We shall however prove a general theorem
which may be considered as saying that, under certain conditions, the
two functions just mentioned exemplify the only ways in which a mapping
can fail to have a fixed point.

I should like to thank Prof. L. E. Ward for his kindness in supplying
me with a copy of his paper [5] in advance of publication.

1. Properties of the partial order. Throughout this section X is a con-
nected and locally connected Hausdorff space, with a partial order (asym-
metric) satisfying:

(a) M(x) = {y; x <y} is closed (all xeX);

(b) M°(x) = {y; v << y} is open (all xeX);

(¢) writing L(x) = {#;2 < x}, L(x) ~ L(y) is a compact chain (all
r,yeX, x =y allowed).

Condition (b) is formally weaker than condition (ii) of [5], but we
shall show that our conditions in fact imply condition (ii).

We begin by listing some known or trivial consequences of our
assumptions. The natural order-topology of any compact chain in X
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coincides with its subspace topology, and any subset of the chain has
a supremum and infimum in the chain (which are also the supremum
and infimum in X of the same set, though we shall not need this fact).
X has a least element, x, say. For any x, M°(x) is open and closed in
X\ {z} and hence either x is maximal or M°(z) is a union of components
of X\{x}; if @ # v, and M°(x) # O, then x is a cut-point. Thus if y > »
then x separates x, and ¥, so that the given order is contained in the cut-
point order (!) with respect to x,. The point # is in the closure of every
component of X\ {x}; it follows that M (x) and X\ M°(x) are connected.

As in [5], we define C(x) = ly; M(#) ~ L(y) = {#,y}}. We index
those components, if any, of X \ {x} which meet (and hence are contained
in) M%) as {A;(w); tel(x)}, and write Ci(x) = {&} v (di(z) ~ C()).

(If M°( x) =, we put conventionally I( m) {1} and wrlte Ci(x)
= {x}). We write for brevity 0°(z) = C(x)\{&}, C}(2) = C;(z)\{x}.
We Write further L(E) = |J (L(»); #¢E) and M(E) = U(M(m); wek).

The following lemmas (1-4) correspond clogely to Lemmas 1-3 of
[5]. Some of the Corollaries are not actually necessary for the proof of
our main theorem, but are included for their own interest and to clarify
the consequences of our assumptions.

LeMMA 1. The sets C(x), CU;(x) are closed.

The proof of lemma 1 of [5] applies to C(x). Since A4;(x) = A;(»)
v {z}, we have C;(x) = C(x) ~ 4;(x), hence closed.

LEMMA 2. For all E ¢ X, M(VE) = M(E) v 17}; hence if I' is closed,
then M (F) s closed.

1f y¢E, 9 has a connected neighbourhood U not meeting K. If U/
meets M (x), vell, then for some ¢el(x) we have U < 4;(x) = M°(x),
so that yeM°(x) =« M(E ). It follows that if y¢M(F) v E, then U
~M(E) =@ so that y¢JI (£); the converse is trivial.

LeEMMA 3. If y'eM*(x) = M°(x)\M(CO(x)), then H(y') = (M (y);
@<y <y')is a subset of M*(x), open and closed in M°(x), and hence is
of the form \J (Ai(z); ieIl*(z,y') = I(»)).

Let t'eM(y), <y<y'. If H¢t<¢t such that teC°(x), then since
L(t') is a chain, we have ¢t <<y < %’, a contradiction. Hence t'eJ*(x);
that is, H(y') = M*(x).

Again, if v <y, <y, Hy,, v <<y, << y,; a8 M (y,) = M°(y,), we have
H(y) = U (M°(y); #<y<y'), hence open. Now suppose teM(x)\H(y’)
c XN[L(y') ~ M(x)]. Let E = L(y') ~ MO(m), so that M (E) = H(y').
As L(y') ~ M(x) is closed, t¢M(H) v I = M(E) = H(y'). Since t is
arbitrary, H(y’) is closed in M°(x).

(1) For the definition and properties of the cut-point order see, e.g., [4] or [6],
chapter I1I.
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CorOLLARY 1. M*(x) and M(CO(x)) are open and closed in M°(x),
hence open in X. :

For M*(x) = \U (H(y"); y' eM* () = M*(x), so that M*(x) is a union
of (open) components of M°(x) and M (OU(w)) is the union of the remaining
components.

CorOLLARY 2. If y', 2" are in the same component A; = A;(x) of
M(x) and if L(y') ~ L(2') ~n M°(x) = O, then there exist (distinct) y,, 2,
n C°(x) such that y, <y, 2, < 2'.

For if y'eM*(x) we have iel*(®,¥y’), ¢’ ed; <« H(y'), so that Hye
L(y') ~ L(z') ~ M°(x); similarly if z’eM*(x). Thus %’,2" are both in
M(Co(z)) so that y,,2, exist and are clearly distinct.

We now define the function p, : X — C(z), just asin [5], by p.(y) = 2
iff 2eC°(x) and yeM(2), p,(y) =2 otherwise; we define also the function
Pir: X — Ci(x) (for tel(x)) by

pa(y) i pa(y)eCi(),
Pia(y) = :
@ otherwise.

Lemma 4. The functions p, and p;, are order-preserving and con-
linuous.

As in lemma 3 of [5], the order-preserving properties are easily
verified. If ¥ is a closed subset of C(«) (resp. ()i(x)) and if 2¢F, then
Pz (F) (vesp. piz(F)) = M(F), closed, by lemma 2. If zeF, then G
= C(x)\F (resp. C;(x)\F") is a relatively open subset of (°(x). (In the
case when ¢ = C;(x)\F this is because 4;(«) is open, so that a set open
in 4;(x) ~ C(x) is open in C(x).) By lemma 3, Corollary 1, it is sufficient
to show that M () is open in M(C°(x)), or, taking complements, that
M (F\{x}) is closed in M(C°(x)). By lemma 2, [M(F\{z})]" = [F\{z}]-
v M(FN\N{x}) c¢ I' v M (F\{o}) = M (F\{x}) v {«}. This establishes the
required result and proves that p, and p;, are continuous.

LemMmA 5. If B is connected, then p,(E) and p;,(E) are either single
points or equal to F ~ C(x), E ~ Ci(x) respectively: hence if E is closed
and connected so also are p,(E) and p;.(F).

CorOLLARY 1. If E is a connected subsel of M°(x), then either py(H)
— {a} or, for some iel(x), Py(E) = pi(B) < A;(2) ~ C°(z) = C}(2). "

COROLLARY 2. A;(x) ~ C(x) = Of(x) is either empty or a component
of C%x).

We mneed consider only the case when p,(F) contains at least two
points; let vep,(H), ¥ #«. Then K ~ M(y) #9O, but I & M(y) as
p(F) # {y}. Since F is connected and M°(y) is open and closed in X\ {y},.
this implies that yeF. In the same way, since p;'(@z)\{z} = M*(2)
v [XN M (z)] is open and closed in X\ {z}, we see that if xep, (&), then
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either p, (/) = {x} or zel. Thus in all cases we have either p,(F) a single
point or p,(F) < K, in which case p,(F) = E ~ C(x). We see similarly
that p; , (k) is either a single point or equal to I/ ~ C;(x), since if I/ meets
two components of X\{x} it must contain z. This last remark proves
Corollary 1.

To prove Corollary 2, we suppose yed;(x) ~ C(x); then M(y) is
a closed connected subset of X\ {x}, so that M(y) < A;(x). But M(y)
# Aq(x) since wed;(z), so that p,(4;(x)) # {y}. By the lemma, A;(x)
~ C(x) = px(A,;(a?)) and is connected since p, is continuous; it is clearly
not contained in any larger connected subset of C%(x).

2. Application to functions whose values are connected closed sets.
We recall that a set-valued function is upper-semi-continuous (u.s.c.)
iff, given any x, and any open set G containing f(w,), there exists a neigh-
bourhood N of x, such that f(x#) « G for all xeN. The following pro-
position follows at once from the definition and lemmas 4 and 5.

LemMA 6. If f is an upper-semi-continuous function defined on a set X
(with the properties assumed in § 1), mapping points of X o non-empty
closed connected subsets of X, then p of and p; .of are u.s.c. and map poinis
of X to closed connected subsets of C(x), C;(x) respectively.

(Here, as usual, we use the same symbol for the point-to-point func-
tion p, and the set-to-set function defined by p.(H) = {p.(y); yek}.)

We next prove a lemma (again under the same conditions on X)
corresponding to lemma 7 of (5). We remark that if we assumed X reg-
ular (not merely Hausdorff) we could give an alternative proof much
more like that of the lemma mentioned.

LEMMA 7. Let f, X be as in lemma 6. If x, <y, f(®,) < M°(x,),
and x, = supl, where FE = {v;xeM(x,) ~ L(y,) and f(xr) =« M°(x)},
then x,e B o f(x,). :

The supremum x, exists (in L(y,)) as L(y,) is a compaet chain.
Since the order-topology and induced topology agree on L(y,), and
XN\ f(z,) is open, if @, ¢f(x,) there exists z; in L(x,)\ {z,) such that z; < 2,
< @, implizs z,¢f(x,). Take any such z, and suppose that, if possible,
fl@y) ~ (X\ Jl[(zz)) # @. Since X\ M (z,) = (X\{23})\M°(2,) is open and
closed in X\ {z,}, which contains the connected set f(x,), we must have
flx,) =« X\ M(z,). By the u.s.c. property, there exists z; (depending
on z,) in L(wx,)\{x,} such that z; <z <, implies f(2) = X\ (z,).
But this is impossible, since, as z, = sup H, there exists 2z in I such that
max(2,, ;) << & < &, (max(z,, z;) exists by the chain property), so that
f(&) « M%2) =« M(z,). Thus f(x,) = M°(z,) for all 2z, such that z; <=z,
< w,. Let yef(x,); then y >z, for all z, as above, and hence (as L(x,)
is a chain) for all z, < x,, in particular for all z,eF if we suppose x,¢F.
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That is, if w,¢ /7, y = sup £ = @, (now considering the sup in the compact
chain L(y) ~ L(y,)) so that as y is arbitrary we have f(x,) = M(x,),
contradicting our suppositions that x,¢f(x,) and z,¢H.

We are now in a position to state and prove our main theorem;
we recapitulate all the conditions.

ToeorREM 1. Let X be a connected, locally connected and (asymme-
trically) partially ordered Hausdorff space, such that, for all x,yeX, (a)
M(x) is closed; (b) M°(x) is open; (¢) L(x) ~ L(y) is a compact chain.
Let f be an upper-semicontinuous function, defined on X, whose values
are non-emply closed connected subsets of X, such that p,of|C(x) has the
fixed-point property for every C(x) (or alternatively, p;yof|Ci(x) has the
fixed-point property for every C;(z), xeX, iel (::r,)). Then either f has the
fized-point property on X (i.e. xef(x) for some x) or there exists a sequence
{n;n =1,2,...} in X such that

(1) @p > @, whenever p > n;

(ii) f(x,) < ]l[“(mn), all n;

(iil) ~ M(x,) =

(iv) either x,ef( wn) for all n, all p >n, or f(r,) ~ M(x,) =@, all n,
all p >n.

COROLLARY. If X 4s enumerably compact, then f has the fized-point
property.

Suppose that, for all xeX, x¢f(x).

We first form a sequence {x,;n = 0,1, 2, ...} having properties (i),
(ii) and (iii) above (for » = 0) and also the following property (iv)*: for
n=>=1, x>z, implies that either (a) f(x) ~ M(x) =0 or (b) f(a,_,)
~ M(x) =0 or (¢) vef(wn_,). We begin with x,, the least element of X,
which satisfies (ii) since we assume that x,¢f(z,). Suppose that x, has
been defined for 0 << n <{ m in such a way that (i), (ii), hold for 0 < » < m,
1<<p<m and (iv)* for 1 <<= < m; we proceed to define w,_,.

Set a = x, and let b > a be any point selected from f(x,,). By lemma 7,
the set {a; a<r<band f(r) = M°x)} has a greatest member ¢ say
(since x ¢f(x) all ). If ¢ +# a, we put »,,, = ¢, so that (i) and (ii) remain
satisfied. If B> ®pmyy = C a,nd if f(x) ~ M(x) = f(x) ~ M°(2) # @, then
as f(x) is connected and M°(x) open and closed in X\ {z} we have f(z)
< M°(z), so by definition of ¢, b¢M (x); as b is in the connected set f(x,,)
the same argument shows that either f(x,) ~ M(z) =0 or zef(ay).
Thus (iv)* also holds for » = m--1.

We now consider the possibility that ¢ = a. We suppose first that
L(b) ~ M°(a) has no least member, and show that this is in fact impos-
sible. For if so, since the order-topology of L(b) agrees with its subspace
topology, we have ae(L(b)m M°(a))~. As aeX\f(a) (open), we can
find yelL(b) ~ M°(a) ~ (X\f(a)). That is, f(a) = M°(y) (again by con-
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nectedness); by the u.s.c. condition we can find a neighbourhood U of
a such that zeU implies f(x) < M°(y). Now by the same argument,
since L(y) ~ M°(a) has no least member there exists xzelU ~ L(y)
~ M°(a). This however is impossible as <y <b and f(z) = M°(y)
< M°(x) so that, by definition of ¢, a = ¢>=> 2 > a.

Let therefore (if ¢ = a) b’ be the least member of L(b) ~ M°(a),
so that, for some iel(a), we have b'eCj(a) and p,(b) = p;4(b) = b'.
By lemma 5, Corollary 1, p.[f(a)] = pial f(a)] = C}(a), not containing a.
By the hypotheses there exists some y in (' (a) with yepg,of(y) (or some y
in O;(a) with yep;q,0f(y)) so that y >a = 2, and (since we assume
yéf(y),f(y) =« M°(y). We can therefore put z,,, =y and satisfy (i) and
(ii). As above, (iv)* is also satisfied since x > @, ,, implies @ >, =c.

We can therefore suppose z, defined for all », satisfying conditions
(i), (ii) and (iv)*. We say that condition (iii) must also be satisfied. For
if ye ~ M(wx,), in the compact chain L(y) there exists s = supw,, and
seS where § is the set {w,;n» =1,2,...}. By lemma 7, condition (ii),
with s¢f(s), implies that f(s) = M°(s). Then by upper-semicontinuity,
since seS, we have f(x,_,) = M°(s) ¢ M°(@,,,), for some n, but this,
with (i) and (ii), contradicts (iv)*.

Finally, we can choose a subsequence {@pm),n = 1,2,...} of {@,}
which (with the obvious change of notation) satisfies condition (iv) as
well as (i), (ii) and (iii). Suppose first that for all N there exists p = p(XN)
> N such that x,¢f(x,) for all ¢ > ¢(p) say (necesswrily q(p) >p). Take
in succession r(1) = p(1), r(m-+1) = p[q )], then f(2,m) contains
@pmy for all m >mn. The other possibility is that, for some N, to every
p = N, corresponds some ¢ = q(p), as large as we like, such that z,¢ f(2,);
we need require only that g = p-+2 and then condition (iv)* requires.
that f(ap) ~ M(x,) = O, so that f(xy) ~ M(2,) =0 for all n>¢q. If
we put r(1) = N, and r(n+41) = ¢[r(n)], we obtam a sequence satis-
fying the second condition of (iv).

Alternative statement of the theorem. Let ), denote the elass of
upper-semi-continuous functions whose values are nonempty connected,
closed subsets of the domain of definition of the function. Then, in view
of lemmas 4 and 5, we can state our theorem as follows:

THEOREM 1A. If X satisfies the conditions of Theorem 1, and if e(wh
C(x) (or alternatively each C;(x)) has the fixzed-point property for functions
of class Q, (defined on C(x) or C;(x) respectively), then given a function f of
class Q, on X, either f has the fized-point property or a sequence {x,} exists
with the properties (i) to (iv).

In a similar way, we can state a theorem for functions possessing
some property @ (cf. Theorem 1 of [5]), provided that if any function f
has property @ on X and p is an order-preserving retraction on X, then:
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pof|p(X) has property @ whenever it is of class @,. (As we have shown,
the retractions we actually use preserve the property of being of class Q,,
but it is easily seen that this is not in general true of all order-preserving
retractions, since pof(x) need not be closed.) The detailed statement
of this form of the theorem is somewhat tedious and is left to the reader.

3. Application to the cut-point order.

THEOREM 2. If X 148 a connected and locally connected Hausdorff
space, then the cut-point order on X (with respect to any w,eX) satisfies
the conditions (a), (b) and (¢) of Theorem 1. The non-degenerate sets C;(x)
are the maximal non-degenerate cut-point-free connected subsets of X (Why-
burn’s F,-sets).

We recall that the cut-point order with respect to x, is defined by
writing « << y iff either ¢ = w,, ¥ # @, or ¥ separates z, from y; that is,
there exist in X\{x} open complementary sets A, B such that z,e4,
yeB. (If X is locally connected this is equivalent to saying that y does
not lie in that component A4,(x) of X\ {x} which contains x,.) It is indeed
a partial order, and has the properties: (i) for every «,ye¢X, L(x), and
hence also L(z) ~ L(y), is a chain containing x,; (ii) if y < @, then 2
separates @ from y iff y << 2 << x. It is clear that if X is locally connected,
then M (x) = X\ A44(x), closed, while M°(x) = X\ A4,(x), open.

It remains to prove that L(x) is compact. This was proved by
Whyburn, in [6], chapter I1I, Theorem 4.2, in the case when X is metric;
the basic ideas of his proof can, as we shall briefly show, easily be adapted
to our more general case. We note first that if y ¢ L(x), then (X being
locally connected and Hausdorff) every zeA4,(y) has a connected neigh-

bourhood U(z) such that y¢ U(z), so that U(z) = A,(y). By Whyburn’s
“chain lemma” (loe. cit., II, Theorem 3.1), it follows that there exists
a connected closed subset of X\ {y} which contains x, and . We deduce
(cf. loe. cit., 11T, Theorem 4.12) that L(x) is closed (2).

Now let {G;,iel} be any relatively open cover of L(z). Since X
is locally connected and L(x) closed, X can be covered by connected
open sets V(y) such that L(z) ~ V(y) is (empty or) contained in some G;.
Again by the chain lemma, there exists a connected set, V = (J (V(%,);
r=1,2,...,n) say, containing both x, and «. If y ¢V, then Ay,(y) = V;
that is, L(x) = V, and hence is covered by a finite subset of {G;}.

Now let F be any FK,-set of X; as F is connected and cut-point free
(in itgelf) it is easily seen that no point of X can separate two points
of E. Let a,beF (@ ++ b) and let ¢ be the greatest point of L(a) ~ L(b).

(2) This part of the result is stated (for X locally connected and Hausdorff)
by Hocking and Young [2], Theorem 3.8. The proof there given, while essentially
the same as that sketched above, appears however to assume X regular.

Colloquium Mathematicum XVII.2 ]
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Then (using the notation of § 1, applied to the cut-point order) all points
of F other than c¢ lie in the same component 4; of X\ {c}; as one at least
of a,b is in M°(¢) we have E c A; v {¢} =« M(c). In the same way,
no point  can separate ¢ from any point of #, as if so it must separate ¢
from one at least of a, b, so that (e.g.) c< 2z < a, ¢e< 2 < b, contrary
to the definition of ¢; hence £ < C(¢) so that E < C;(c).

Conversely, C;(») is always connected, being p;.(X) where p;, is
continuous. We show that it is cut-point-free (in itself). Now C;(x)\{z}
= C}() is connected by lemma 5, Corollary 2, while if ¥ eC?(x), we have
Co(@)\{y} = Pia(XNM(y)) = pia(4o(y), again connected as pi, is
continuous.

On combining these results, together with the obvious fact that
distinct C;(2), C;(2') intersect in at most one point, even if x = &', we
see that every non-degenerate C;(x) is an E,-set, and conversely.
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