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Let us recall that a Cantorian manifold is understood to mean a fi-
nite-dimensional compact connected metric space X such that X remains
connected after removing any subset of dimension less than dim X —1.
A question from my paper [2] concerning mappings of Euclidean spheres
has been answered by Skljarenko [3] and Jung [1] who proved that
if fis a non-constant mapping of a Cantorian manifold X, then

(1) 0 < dim{y: dim X —dimf(X) < dimf~(y)}.

The aim of the present paper is to strengthen this inequality by
localizing the dimension of f(X). Namely, we use the inductive defini-
tion of dimension and instead of dimjf(X) we take dim,f(X), i.e. the
dimengsion of the image f(X) at the point ¥ (see Theorem 1 below). Observe
that dim,X — dimX for all #eX because X is a Cantorian manifold.
Outside the class of Cantorian manifolds an analogue can be proved
under the strong restriction that dimX < 2 (see Theorem 2). That this
restriction is necessary is shown by an example at the end of the paper.

We start with a lemma which modifies a lemma of Vaindtein [4].

LEMMA. Suppose X; = X is an F, in a separable metric space X
(i =0,1,2,...) and X, is O-dimensional. If A, B are disjoint closed sub-
sets of X, then there exists a closed separator C of X between A and B such
that ¢ ~ X, — @ and, for every i =1,2,... and weX, the inequalities

0 < dim,[X; v {x}] < o©
imply the inequality

dim, [(C ~ X;) v {&}] < dimg[X; « {#}].

Proof. Denote by X;; the set of all points zeX such that X; v {#}
is j-dimensional at @ (¢, =1,2,...). Then there exists a collection fj;
of open subsets of X such that the intersection of X; with the boundary
of each get from f;; is at most (j— 1)-dimensional, and every point of Xy
possesses a local open basis in X consisting of sets from f;. Since X is
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separable metric, there exists a countable collection vi; < Py with the
latter property. Let us take all non-empty intersections Xip (B =1,2,...)
of X; with the boundaries of the sets from y;, and put Xiw = X, pro-
vided ¢-j-& = 0. Since X;; are closed subsets of X;, each Xy is an F,
in X (4,j,k=0,1,2,...). According to Vaintein’s lemma (see [4],
p. 176), there exists a closed separator ¢ of X between 4 and B such
that
dlm(O’ s —Xijk) < dimXi,-k

for 4,7,k =0,1,2,... It readily follows that ¢ fulfils requirements
of our lemma.

THEOREM 1. If f is a non-constant mapping of a Cantorian mani-
fold X, then

(ii) 0 < dim{y: dim X —dim,f(X) < dimf-(y)}.

Proof. Inequality (ii) trivially holds if f(X) is infinite-dimensional.
Thus we can prove the theorem inductively on % = dimf(X). Since f
is non-constant and X is connected, we have % > 1 and (ii) follows from
(i) provided ¥ = 1. Assume the theorem is true for k< # and we are
given a non-constant mapping f of a Cantorian manifold X such that
dim f(X) = n.

Put m =dimX, and ¥ = {y: m—1 < dim f(y)}. The set f(X)
is positive-dimensional at each of its points, and therefore (ii) holds if Y
is positive-dimensional. Assuming dim ¥ < 0, let us consider two points
P,q of f(X). Since Y is an F, in f(X), it follows from the lemma that
there exists a closed separator C of f(X) between p and q such that

CAnY =0, dim,0< dim, f(X)

for yeC. Consequently, we have dimC<n and m—1 < dim (0)
because f-1(C) cuts the m-dimensional Cantorian manifold X. Thus
Jf~1(C) contains a Cantorian manifold X’ of dimension at least m—1.
I'ts image f(X') cannot be a single point as f(X’) lies in € and C is disjoint
with ¥. By the inductive hypothesis, the theorem applies to fIX' and X'
but

dim X — dim, f(X) < m — dim, C— 1 < dim X’ — dim,, f(X’)

for yef(X’), and the proof of Theorem 1 is completed.

Remark. An attempt to strengthen inequality (i) by localizing the
dimension of f-1(y) will probably fail. Related to this is the following
question (P 614): does there exist a Cantorian manifold X and a map-
ping f of X such that dimf(X)< dim X and each counter image f~1(y),
where yef(X), contains a point = at which it is 0-dimensional, i.e.
dim, f~1(y) = 02 '
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TuroreM 2. If f is a mon-constant mapping of an at most 2-dimen-
sional continuum X and m(y) = max{dim,X: zef~'(y)}, then

(iii) 0 < dim{y: m(y)— dim,f(X) < dimf~(y)}.

Proof. Let Y denote the set {} from inequality (iii). We have
dimY >0 provided dimX =1 or dimf(X)>1, so let us assume
that dimX = 2 and dimf(X) =1. If m(y) = 2 implies dimf~(y)>0,
for each yef(X), then ¥ =f(X). Thus we can also assume that
there exists a point y,¢f(X) such that m(y,) =2 and f*(y,) is
0-dimensional.

Put ¥’ = {y: 1 < dimf(y)}. Since ¥’ < ¥, it suffices to prove
that dim Y’ > 0. Suppose on the contrary that dim Y’ < 0, and consider
a point a,ef~1(y,) such that dim, X = 2. Let U be an arbitrary neigh-
bourhood of #z, in X. The set f‘*(yo) being 0-dimensional, there exists
a neighbourhood V of #, in X such that V < U and the boundary V\V
of V is disjoint with f~1(y,). Consequently, the sets {y,} and f(V\V)
are disjoint. Since ¥’ is an F, in f(X), it follows from the lemma above
that there exists a closed separator G’ of f(X) between y, and f(V\V)
such that

CAY =0, dimC<1
which yields
dim f-1(0) < dimC+dimf|f~(C) = 0,

according to the Hurewicz theorem. But X' = f7(0) ~ V is a separator
of V between f~1(y,) ~ ¥V and V\V. Thus X' is a O-dimensional sep-
arator of X between z,and X\ V. This contradicts the equality dim, X =2,
and Theorem 2 is proved.

ExXAMPLE. There exists a non-constant mapping f of a 3-dimensional
continuum X such that

dim, X = 3. dim, f(X) =1

for xeX and yef(X), and the set {y: 2 < dim f (y)} is countable.

Proof. Denote by I the unit segment of the real line and by J,, J, .
the segments which are closures of components of the complement of
the Cantor set in I. Let D; be a plane circular disk whose diameter is Jy
(i=1,2,...). We define X by the formula

X"——(IuDlupgu...)XI,

and we determine f as a mapping induced by the upper semi-continuous
decomposition of X into sets D;xI, where i =1,2,..., and the sets
{p}xI, where pel\(D; v Dy v ...).
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