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1. Introduction. In a series of papers [7]-[9] the author discussed the
necessary and sufficient conditions for contra, concurrent, special concircular,
recurrent, concircular, torse forming and birecurrent vector fields to generate
an affine motion in a Finsler manifold. The present paper, which is the last
one of the above series, deals with the same problem for a vector field v'(x’)
whose Berwald’s covariant derivative 4, v' is recurrent, i.e, #; B, V' = u; #,V,
u; being a non-zero covariant vector field. This paper also presents an
elegant generalization of theorems due to the author [4], Kumar [1], Misra
and Meher [2] and Takano [11].

2. Preliminaries. Let F,(F, g, G) be an n-dimensional Finsler manifold
of class at least C’ equipped with a metric function F(') satisfying the
required conditions [10], the corresponding symmetric metric tensor g and
the Berwald’s connection G. The coefficients of Berwald’s connection G,
denoted by G, satisfy

(2.1) @) Gi =Gij, () Gu* =G}, () 6,G)=Gj,

where 3k means the partial derivative with respect to x*. The partial
derivatives 0, G’ of the connection coefficients G/, constitute a tensor whose
components are denoted by G’,. This tensor is symmetric in its lower indices
and satisfies

(2.2) G.iilth .ih = Gihj x'h = G;U'k x.h = 0.

The covariant derivative .4, T; of an arbitrary tensor T} for the connection
G is given by

(23) BT} = 3T -4 T) G+ T Go— T/ Gy,

J

(*) Unless otherwise stated, all the geometric objects used in the paper are supposed to be
functions of line elements (x, x). The indices i, j, k, ... take positive integral values from 1 to n.



334 P. N. PANDEY

where g, = 0/0x*. The operator %, commutes with the operator d, and itself
according to

(24) 8B Ti— B 8 T, = T, Gjpo— T Glun,
(25) B, BT~ BB Ti = Ty Hy,— T o —(0. T}) Hi,

'where HY, constitute Berwald’s curvature tensor. This tensor is skew-
symmetric in first two lower indices, and positively homogeneous of degree
zero in x'. It should be noted that Hj,, coincides with Hj,; of Rund [10]. The
tensor Hj appearing in (2.5) is connected with the curvature tensor by

(2.6) () HypX* = Hyy, (b) &, Hy = Hi,.
This tensor is related with the deviation tensor Hj by
@7 () HyX* = Hi, (b) (& Hi—&;H}) = Hi;.

The associate vector y;, of X satisfies the relations (see [6] and [10])
(2.8) (@ y; X =F2?, (b) y;H) = 0,_ (©) gix Hoj+yi Hop = 0,

where g;; are components of the metric tensor g.
Let us consider the infinitesimal transformation

(29) X = x' +ev' (x)

generated by a vector v'(x/), ¢ being an infinitesimal constant. The Lie
derivatives of an arbitrary tensor T} and the connection coefficients G with
respect to (2.9) are given by (see [12])

(2.10) ST =v BT -T BA+T B0 -0, T) BV %,

(2.11) £G', = B; B V' + Ho 0"+ Gy, B0 X

The operator £ commutes with the operators %, and 6,‘ according to
(2.12) (£8— B ) T} = T} £G4 — T} £G5— (6, T)) £G},

(213) (B £-£6)Q =0,

where 0 is-a vector, tensor or connection coefficient. The necessary and
sufficient condition for the vector v'(x/) to generate an affine motion is given
by (see [12]) |

(2.14) £G4, = 0.

3. Affine motion in a Finsler manifold.

THEOREM 3.1. A vector field v’ (x)) which satisfies any two of the following
‘conditions must satisfy the third one:

(A) val;njk = W!gk Ui,
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(B) QQ,U' = ujgk Ui,
© () £G4 =0, (i) Gl B,0' % =0,

where u; and w; are non-zero covariant vector fields.

Proof. Let us consider a vector field v'(x/) which satisfies (A) and (B).
The Lie derivative of Gj with respect to an infinitesimal transformation
generated by the vector field (/) is given by (2.11), which, in view of (A)
and (B), may be written as

(3.1) £G;k = (u+w,).@,‘ Ui+G§krg v')'c".

Since G and G, are symmetric with respect to the indices j and k in (3.1),
(u;+w )Q,v‘ must be symmetric, i.e.,

(3.2) (uj+Wj) Q,, = (uk+Wk) Qj Ul
This equation implies at least one of the following:
(3.3) (@) B, =0, (b) uj+w; =0, (¢) Bv'=@w+w)X'

for some non-zero vector field X*. If (3.3a) holds, equation (3.1) reduces to
£G% = 0. Also, in this case, G, #, V" x* = 0 holds identically. Thus, condition
(C) holds for the vector ' (x’). If (3.3b) holds, equation (3.1) reduces to

(34) £GY = Gy, BV 3.
Transvecting (3.4) by x*, and using (2.1b) and (2.2), we have
(3.5) £G4 = 0.

Differentiating (3.5) partially with respect to x*, utilizing the commutation
formula (2.13) and using equation (2.1c), we have £G% =0, and hence (3.4)
gives Gix, 2,V X* = 0. Thus, condition (C) holds. In case of (3.3c), condition
(A) becomes

(3.6) o™ ;njk = w; (4 +wy) X
Transvecting (3.6) by x* and using (2.6a), we have
(37) UmHl;,,j = wj(u,,+w,‘)J'c"X‘.

Transvecting (3.7) by y; and using (2.8b), we have at least one of the
following:

(3.8) @) (+w)x* =0, (b) y; X =0,

since w; # 0. In case of (3.8a), equation (3.7) gives v™ H,,; = 0, which after
partial differentiation with respect to x* implies v™ H:,, = 0. Also from (3.8b)
and (3.6) we have v™y; H',,,j,‘ = 0. Transvecting (2.8c) by v™ and using
v"y; H,, = 0, we have g;, H,;v™ = 0. Transvecting g, H,,,v™ = 0 by g* and
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using g*'gy = &;, we get H,;v™ =0, which implies v™ Hi; = 0. Thus, both
the conditions given by (3.8a) and (3.8b) imply v™ H,,; =0 separately. In
view of this equation and w; # 0, condition (A) gives %, v’ =0, which is
nothing but (3.3a), a condition already discussed. Thus, we conclude that
each of the conditions given by (3.3) implies (C). Therefore, (A) and (B)
imply (C).

Let us consider a vector field v'(x/) which satisfies (A) and (C). In this
case, equation (2.11) may be written as

Qj.@kvi = uj'@kvi,

where we have put —w; =u;. Thus, (B) holds for the vector field v’ (x)).

Again, if a vector field v’ (x/) satisfies (B) and (C), equation (2.11) gives
(A), where w; = —u;. This completes the proof.

Let us consider a vector field v’ (x’) satisfying condition (B). Since any
contra vector field v* (x’) satisfies (B) trivially, we shall exclude this case from
our discussion. Differentiating (B) partially with respect to x* and utilizing
the commutation formula exhibited by (2.4), we have

(3.9) B;(Giay V') + Gipy BV — Glpy B, V' = (0,u)) Bi V' +1; Gl V'

Transvecting (3.9) by x* and using (2.2), we get

(3.10) o X5 BBy U7 = (O ;) X* By V.

If condition (Cii) holds, (3.10) gives at least one of the following:
(3.11) (a) dyu; =0, (b) X**B,v' =0.

If (3.11b) holds, its partial differentiation with respect to x* and the use of
(2.2) imply #,v' = 0, a trivial case. Hence, for a non-trivial case, (3.11a) must
hold, i.e., the covariant vector field u, is independent of %'. Conversely, if the
vector field u, is independent of X', equation (3.10) gives (Cii). Thus, we
conclude

THeoReM 3.2. If a vector field v'(x’) satisfies condition (B), then the
necessary and sufficient condition for the covariant vector field u, to be
independent of X' is given by (Cii).

Let us consider a veetor field v (x/) which satisfies (B) and the vector
field u, which is independent of x'. In view of Theorems 3.1 and 3.2, we may
conclude that conditions (A) and (Ci) are equivalent. Since (Ci) is the
necessary and sufficient condition for the vector field v'(x/) to generate an
affine motion, we have

THeoREM 3.3. Condition (A) is necessary and sufficient for a vector field
v* (X)) satisfying condition (B) where u, is independent of %' to generate an affine
motion.
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4. Affine motion in special Finsler manifolds. Takano [11] considered a
non-Riemannian manifold of recurrent curvature and proved that a vector
field v' generates an affine motion in a non-Riemannian manifold of recurrent
curvature, characterized by

(4.1) Vm B.iikh = Am Bj'u.,

if

4.2 fA,, =0,

4.3) LBy = A V; V',

44) L = A, v™ # const,

4.5) A =2Vihg (2Qup = 2i;—Q5),

where V,, Bﬂkh and 4, are the operator for covariant differentiation, the
curvature tensor and the recurrence vector, respectively.

Kumar [1], Misra and Meher [2] extended this theorem to Finsler
manifolds of recurrent curvature and proved that a vector field ' generates
an affine motion in a recurrent Finsler manifold, characterized by

4.6) B Hisp = A Hig,
if

4.7) LH,), = Ay B,V
4.8) A, =0,

4.9) L = A, v™ # const,
(4.10) Ap = 28y,
4.11) G = 0.

The author [4] generalized this result by relaxing the condition (4.11). Now,
we propose an elegant generalization of this theorem in the following form:

THEOREM 4.1. A vector field v'(x’) generates an affine motion in a recur-
rent Finsler manifold if aH'y, = a; 2,0, a and a; being any non-zero scalar
and tensor fields, respectively. _

Proof. Let us consider a vector field v’ (x’) satisfying aH%, = a; #,v' in
a recurrent Finsler manifold characterized by (4.6). Dividing the equation
aH'y, = a; #,v' by a and putting a;/a = a,, we have
(4.12) H_iikh = Ejk gh UL.

Differentiating (4.12) covariantly with respect to x™ and using (4.6), we have

(4.13) (lmﬁﬁ—gmﬁﬁ)ghv‘ = Ejk .Q,,Q,,vi.
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Since the tensor field a; is non-vanishing, we may choose a tensor field f*
such that a; f* = 1. Transvecting (4.13) by f’, we have condition (B), where

Up = (Am ajh_gm Ejk)fjk'
Transvecting (4.12) by v/, we get condition (A), where Wy = av’. In view of

(2.11) and conditions (A) and (B), the Lie derivative of G, with respect to an
infinitesimal transformation generated by the vector ﬁeld v'(x)) is given by

(4.14) Gl = (u;+ W) By V' + Gl BV %

Since Gj, and G, are symmetric in the indices j and k, equation (4.14) shows
the symmetry of (u;+w) %, v in j and k. Hence

4.15) (uj+w) B V' = (u+wy) B;0,

which implies at least one of the following:
(4.16) (a) gk Ui = 0, (b) u]+WJ = 0, (C) .@kv' = (u,‘+wk)Xi,

where X' is some non-zero vector field. (4.16a) cannot hold as it, in view of
(4.12), leads to Hj, =0, a contradiction to the fact that the curvature tensor
Hj,, of a recurrent Finsler manifold is non-vanishing. If (4.16c) holds, (4.12)
may be written as

Hip = [V, Where fi, = @ (up+w)).

Thus, the curvature tensor Hj, is written as the product of a tensor and a
vector. This contradicts the Theorem of [6] which states that the curvature
tensor of 4 non-flat Finsler manifold cannot be written as the product of a
tensor and a vector. Therefore, (4.16¢c) does not hold. Hence we have (4.16b).
This reduces (4.14) to

4.17) £G' = G\, B,V X

Transvecting (4.17) by ** and using (2.1b) and (2.2), we have £G)=0.
Differentiating £G; = 0 partially with respect to x* and using the commuta-
tion formula (2.13), we get £6k G} = 0, which, in view of (2.1c), gives £G, =
Thus, the vector field v'(x/) generates an affine motion.

Proceeding in a similar way, we may prove '

THEOREM 4.2. A vector field v' (x/) generates an affine motion in a symmet-
ric Finsler manifold, characterized by #,, Hiyy, = 0, if aH'%y, = aj, 8, V', where
and aj, are non-zero scalar and tensor fields, respectively.

Let us consider a vector field v'(x)) satisfying aHj, =a; ®,v in a
récurrent Finsler manifold. According to Theorem 4.1, v(x/) generates an
affine motion. Since every affine motion is a curvature collineation, we have
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£H‘},‘,, = (, which, in view of (2.10) and (4.6), can be written as

(4.18)
LHj”,— Jk'l% v +H'rkh% U’+H;ﬂ| ”kv +Hl'k,. 49,,0 +(a k,,):é’,v'.i:’ = 0,

where L = 1,v". Transvecting (4.18) by a,, and using aHj, = a; #,V', we
have

4.19) | | _
Lay, Hi—o {Hyy Hip — Higpy Hij— Hipy Hige — Hiy Hiy— (0, Hi) Hip) = 0.

Differentiating (4.6) covariantly with respect to x' and taking skew-symmetrlc
part with respect to the indices / and m, we get

29[,.9,,,] kh = z(g[l'lm]) kh’

which, in view of the commutation formula exhibited by (2.5) and (4.10),
gives

(4.20) Hj, Hip— H 7mj_Hj'rh Hipy — fm Imh— (6 u.)H = A Hj-,‘,,.
From (4.19) and (4.20) we get
4.21) La,, = aA,,,

since Hj, # 0. Since a,, and a are non-zero tensor and scalar fields,
respectively, it is obvious from (4.21) that the vanishing of L implies and .is
implied by the vanishing of the tensar A,,. Thus, we have

THEOREM 4.3. If a recurrent Finsler manifold admits a vector field v (x’)
satisfying oaHj, = a, #B,V', then the vector field v' is orthogonal to the
recurrence vector A, if and only if the tensor field A,, vanishes identically.

Let us consider a vector field ¢ (x)) satisfying aH'y, = a, 8, v'. This
vector field, in view of Theorem 4.1, generates an affine motion. Since the
recurrence vector is a Lie invariant under an affine motion, we have £4,,
= 0, which, in view of (2.10) and (4.10), may be written as

4.22) o A+ B, L =0,

the recurrence vector A, being independent of X (see [5]). From (4.22) it is
clear that the covariant derivative of the scalar L vanishes if and only if
V' A,, =0. We claim that v"A4,, =0 if and only if 4,, = 0. Suppose v" 4,,,
=0. If 4,, #0, then the tensor A; satisfies (see [3])

j’m Ajk +/1] Akm + Ak Amj = 0,
which after transvection by v™ and then summing for m, takes the form
(4.23) LAjk + ;'j Akm v+ lk Amj ™ =0.
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In view of v"A,, =0 and skew-symmetry of A, (4.23) gives LA, =0,
whence L= 0, which contradicts Theorem 4.3. Thus, v" 4,, = 0 implies 4,
= 0. Conversely, if 4; =0, we have v" 4,, = 0 identically. Hence the condi-
tions Ay =0 and v A4,, =0 are equivalent. Thus we may conclude

THeOREM 44. For a vector field v'(x)) satisfying aH', = a; #,v' in a
recurrent Finsler manifold, the following conditions are equivalent:

(i) #,L=0, (@) v"4,,=0, (i) 4y =0.

If L # 0, we have 4, # 0 and both satisfy (4.21). Putting the value of a,,
from (4.21) in aHj, = a; #,v' and bearing in mind that « # 0, we have (4.7).
Hence, in this case, Theorem 4.1 takes the form

TueoReM 4.5. If a vector field v' which is not orthogonal to the recurrence
vector (L # 0) satisfies LH}), = Aj, B,V', then it generates an affine motion in
the recurrent Finsler manifold.
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