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oo

Let X be a linear metric complete space. We say that a series >,
n=1

is unconditionally convergent if it satisfies one of the following conditions:

o0
(a) For each permutation p, of positive integers the series Za:pn
is convergent. n=1

(b) For an arbitrary sequence ¢,, where ¢, = +1 or 0, the series

o0
D ey, is convergent.
n=1

(¢) For an arbitrary sequence &,, where ¢, = +1 or —1, the series

78

e, %, 18 convergent.
n=1

Conditions (a), (b) and (¢) are equivalent. If the space X is locally
convex we can add (see [3], p. 59) another equivalent condition:

(d) For an arbitrary bounded sequence 2, the series > A,m, is con-
vergent. =t

In this note we show that the equivalence (a) = (b) = (¢) = (d)
is true for locally bounded spaces. The note contains also an example
of a linear metric complete space such that (a) = (b) = (¢) does not
imply (d). (Let us remark that (d) trivially implies (b).)

TuroreEM 1. Let X be a locally bounded complete space. Then (b)
implies (d).

Proof. Without loss of generality we can assume that the topology

in X is determined by a p-homogeneous norm || || (see [1] or [6]).
Let us remark that there is a constant C such that

(*) sup ”)'lmljL +lﬂa’lnll < O sup ||81.5L‘1‘lr ‘}"enmn“'

0<A;<1 g;=0o0r1
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Indeed, let us expand 4; in the dyadic form:

)
Y &
= > .); y &5 = 0 or 1.

Then

[
| 2 %
i=1

ll

[ 35 ( D)

7‘=1 =1

" oo
2 2y

i=1 §—1

o0
1 .
QZ?E SUp [ley @+ ... +&@|| < C sup e, @+ ... + ea@yll.

oy g;=00rl gi=00rl
where
o 1 2*
G = 2, v~ op .
— 2 27 —1
i=

Condition (*) trivially implies the thesis of Theorem 1, q.e.d.

Consider a linear metric space X. Let 4 be a star set. The number
¢(Ad) =inf{s >0: A4+ A = sAd} is called the modulus of concavity of
the set A (see [6]). Obviously there are sets with an infinite modulus
of concavity. We say that the space X is pseudolocally convex [8] if each
neighbourhood of zero U contains a neighbourhood of zero U, with a fi-
nite modulus of concavity, i.e. such that ¢(U,) < - co. Locally bounded
spaces are pseudolocally convex,

Repeating the construction of p-homogeneous norm given in [6]
we can construct a sequence of p;-homogeneous pseundonorms (p; can
be different for different pseudonorms) determining topology.

Using the method of the proof of Theorem 1 we can prove

TaeorEM 1'. If X is a pseudolocally convexw complete space, then
(b) implies (d).

7 We do not know if the eclass of pseudolocally convex spaces is the
largest class of spaces possessing the property that (b) implies (d).
We do not know even if it is true or not for the space S or the spaces
N (L) and N (I) (for definition and properties of the spaces N (L) and N (1),
see [0] and [7]) (P 617).

We can only give an example of a linear metric space such that
(b) does not imply (d). This construction is based on the following lem-
mas.
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LEMMA 1. In the n-dimensional euclidean space there is a symmet-
ric open star set A containing all poinis p,, ..., pyn of type (ey, ..., &),
where ¢ = -1 or —1 or 0 such that the set

A" ' = A+ A+ ...+ 4

n—1 times

does not contain the unit cube C = {(&y, ..., &) 2 &I < 1,0 =1,2,...,nf.

Proof. Let A, be the set constituted by all segments connecting
point 0 with the points p,, ..., psn. Let A, be a ball (in the euclidean
sense) of radius &, where ¢ will be determined later. Obviously, the set
A = A,+ A, is a symmetric open star set and it contains all points
Piy ey Pan-

We will show that for sufficiently small & the set A""' does not
contain the cube €. Obviously

A" = AT AT

But 4§ "is an (n— 1)-dimensional set. Hence, for sufficiently small &,
A" cannot contain the cube C.

LEMMA 2. Let B be an n-dimensional euclidean space. We can in-
troduce an F-norm (i.e. a subadditive, but nol necessarily homogeneous
norm, see [2]) such that |p;|| <1, where p; are points determined in pre-
ceding lemma, yet there is a point p = (A, ..., A,) tn the unit cube such
that

pll = n—1.

Proof. We will construct the norm | || by the Kakutani method
[4]. By U(1) we denote the set A constructed in the preceding lemma.
By U(n) we denote the set A™. Similarly as in the Kakutani paper [4],
we define a set U/(1/2%) such that

1 1 |1

If r is a dyadic number, that is, if

m 81:
r =mnt o (i = +1 or 0),
=l
then
Q(r) = U(n)+£¢U(—2~) RREEe \-EiU(Ej‘) T oess ‘{‘EmU(ﬁﬁ‘_)'
Obviously,

U(r+s) = Ur)+U(s),

where # and s are two dyadiec numbers.
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Let
||| = inf{r: we U (r)}.

The function || || is an F-norm (see [4]). Since 4 — (1) a,nd p,eA
pill < 1. Now, because of Lemma 1, there exists a point P = (A, -uuy i)
which does not belong to A" ' — U/(n—1). We have for it

lpll =n—1.

We denote by X, a 2¥-dimensional space with a norm || [l = 27%| Il
where || || is 2 norm constructed in Lemma 2.
Let X be the space of all sequences » — {&,} such that

ol = Ne
k=1

"Sk—l LA E;‘)Hk_]4’|§1i\/ —+ co.
2R g2 2

It is easy to check that the set X is a linear metric complete space
with respect to the norm | |.
Let @, = {67}, where ¢} is a Kronecker symbol. Let ¢ be an arbi-

o0
trary sequence of numbers +1 or —1. The series Zenwn is convergent.
Indeed, from definition, B

4

3

i=m

= %ol + Wl + Wrsal + o il + Wl

where k is the smallest integer such that m < 2%, &’ is the largest integer
such that [ > 2%

ok 2/ l
s !
YU = E &y, Yj = E E; Wy and .Yﬂ - E & ;-
i=m i=27—141 i=2k'+1

Now, due to Lemma 2, we have

'Y()[ == ||(01 vy 0y &, Emary -y 82k”!k—1 \ifjﬁ‘y
1

e

and
1
rY()l - H( ok 117 y €1y Ov O)Uk: \\?'7
whence
l
1 1 11 8
' blb’ffggk_] +y = 7{—427"\\2’(_2 :-\\:’]__n



UNCONDITIONAL CONVERGENCE 331

(s8] [» ]
Hence the series Zen:cn is convergent. Thus the series )'w, satisfies
condition (c¢). =t et

o0}

We will now show that the series w, does not satisfy condition
n=1

(d). By Lemma 2, for each k there exists a point p* = (27, ..., %) em
such that |4j| < 1 and

1

% (2F—1)>

ATy ..oy A >

bo | =

Let 4, = A’;, where & is the smallest number such that m > 2¥ and
i = m—2%. The sequence %, is bounded, but for an arbitrary k we have

gh+1

~ i

D) R = 1 B>
i=2k+1

Therefore the series Zimmm is not convergent. Thus we can formulate
the following et

THEOREM 2. There exist a linear metric complete space X and a series

M, satisfying conditions (a), (b) and (c) which does not satisfy con-

n=1

dition (d).
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