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1. Introduction. This paper is an outgrowth of several ideas, but
it has been most-directly inspired by a paper [2] concerning modular
spaces written by J. Musielak and W. Orlicz.

Musielak and Orlicz defined a modular as follows: given a real linear
space X, a functional o(x) with values —oco< p(#) < - co defined on X
is said to be a modular if the following conditions hold:

Al. p(x) = 0 if and only if # = 0.

A2. o(z) = o(—a).

A3. o(ax+py) < o(x)+ o(y) for every a,f =0, a+f = 1.

If p(x) satisfies the condition p(0) = 0 instead of Al, then o(x)
is said to be a pseudomodular. After establishing basic properties of
modulars, the authors proceed to define a new type of functional using
the modular concept by writing

lz|| = inf{s > 0: Q(ﬁ) = e}.
&

The functional ||z|| is then shown to be an #-norm. In § 2 of the pres-
ent paper, the above condition A2 is removed and functionals on X
satisfying A1, A3 and perhaps also additional conditions are studied.
In § 3 a non-symmetric norm-like funetional || is defined in the sense
of Musielak and Orlicz and some of its properties are studied. Examples
of spaces possessing these new types of functionals are given at conve-
nient intervals within the exposition. In §4 a sufficient condition for
a special type of non-symmetric modular defined on the space w of all
sequences of real numbers to be convergence-equivalent to a symmetric
Musielak-Orlicz modular on o is established. An outline of research
presently being conducted is sketched in § 5.

I would like here to express my gratitude to my doctoral adviser,
Professor Dr. Hidegor6 Nakano, for his kind advice and encouragement.
My thanks also go to my teachers Drs. Takashi Tt6 and Sh6z6 Koshi for
their valuable advice.
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tE R, Non-symmetric modulars.

Definition 2.1. A functional o(x) with values — co< () < 4+ oo
defined on a real linear space is said to be a (non- symmetric) modular
if it satisfies the following conditions:

Ml1. o(x) =0 iff x = 0.

M2. o(ax+py) < o(w)+ o(y) for all a, § > 0, where a+p = 1.

o(x) is called a pseudomodular if 1nstead of Ml it satisfies only the
condition

M1’. ¢(0) = 0.

Analogous to some basic results in [2], the following can be estab-
lished using only the properties M1’ and M2:

LeMMA 2.1. If o¢(x) is a pseudomodular on X, then

(a) e(x) = 0; |

b) for each xeX, o(ax) is a non-decreasing functz'on of a=0;

n

n
() for ;=0 (i=1,2,...,n) and Ya; =1, (Za@m1)<29
i =t

(d) if X, ={weX: g() < + 00 and o(—2x) < +oo}, then Xo s an
origin-symmetric, convex subset of X.

If ¥ # 0 is an origin-symmetric, convex subset of X, denote by Y*
the set of all e X such that kzeY for some positive constant % depen-
ding on X. It is easily shown that such a Y* is a linear subspace of X.
In particular, referring to Lemma 2.1 (d), X7 is a linear subspace of X.

Definition 2.2. A sequence {z,} c X is said to be p*-convergent

to zeX (in symbols: p™-lim #, = x or x, —> x) if there ex1sts a constant
k>0 depending on the sequence {z,} such that

lim o {k(z,—x)} = 0.
N—oo
{wn} is strongly o"-convergent to x if this limit is zero independent
of the choice of k£ > 0.
Definition 2.3. A sequence {z,} = X is said to be o~ -convergent
to zeX (o7 -lim 2, = », z, Q—;a;) if there exists a constant k> 0 depend-
ing on the sequence {z,} such that

limo{k(xr—x,)} = 0.
N"—00
{z.} s strongly o~ -convergent to x if this limit is zero independent
of the choice of & > 0.
Definition 2.4. A sequence {rn} = X is said to be p-convergent
to xeX (o-lim @, = x, x, 5 ) if o"-lim @, = z and o~ -lim x, = . Strong
g-convergence is sumlarly defined.



NON-SYMMETRIC MODULAR SPACES

335

LEmMMA 2.2. If o(x) ¢s @ modular, then the o-limit of a sequence {w,}
ewists and is wniquely determined provided both the o*-limit of {w,} and
the o~ -limit of {x,} ewist.

Proof. Assume p~-lim x, = # and ¢*-lim 2, = y. Then

(Ve > 0)(Tn,) (Vo = n,) o {k(x— )} < %, k=0
and also

(Ve > 0)(Fn)(Vn = nl) ok (@0 —y)} < E K> 0.

Let k" = min (k, £’) and »," = max (n,, n.); then

(Ve > 0)(@n)}(Va > nl') o (k' (& —z,)} < g and o {k' (2, —y)} < %

Thus, for n = n.,

e {? (m_y)} g Q{]c”(m_wn)}+ Q{l‘:”(a’n—y)} < €.

Since ¢ is arbitrary, ¢{}k"(x—y)} = 0, hence }&k" (x—y) = 0, and
thus # = y because k'" > 0. This means that p-lim 2, — x. This limit
is unique because g-lim #, = #’ and g-lim @, = y’ yields #' = y’ by essen-
tially the same argument.

If o(2) is a modular, one cannot (in contrast to the situation with
Musielak-Orlicz modulars) generally establish that the p*-limit (or the
o -limit) of a sequence is unique if it exists, because a sequence may
have a p*-limit but no ¢ -limit (or conversely) as follows:

Examprre 2.1. Let f be the convex real continuous function defined
by f(#) = «*if >0 and f(z) = —a if 2 < 0. Let X be the space » of
all sequences of real numbers. In the space o introduce the modular 0y
defined by

o0

0i(@) = o ({wi}) = Y f(ay)

=1

for any # = {#;}ew; the conditions M1 and M2 can be verified easily
for g;. In o consider the sequence of elements {w,}, where

1 1
Ty = 0,0, 0, ...,O,m,m, ees]e

e terms

For all k,
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but g;(—axx) = -+ oco. Clearly,

lim Qf(mn'—{o}) =0,

n—oc

but for any constant k' >0,
Iim Qf{k'({()}m.’ﬂ")] = -+ oo.
N—00

Hence, of -lim #, = Oew but gf-lim x, does not exist: if it existed
it would also have to be 0Oew (Lemma 2.2) but this is not the case.

In general, a single function modular o; will refer to a modular de-
fined by a single function f on the space w, as in Example 2.1.

Definition 2.5. Two modulars ¢ and o’ on a space X are said to
be equivalent (in symbols: ¢ ~ ') provided that, for any sequence {z,} = X,
ot-lim &, = x iff o'*-lim 2, = #, and ¢ -lim x, = y iff ¢'"-lim z,=y.

THEOREM 2.1. ot- and @~ -convergence coincide for a modular o(x)
on a space X iff there exists a modular o' (x) on X such that o' ~ p and o’
i8 symmetric, i.e., o' (x) = o'(—x) for every welX.

Proof. If o’ is symmetric and o ~ p, then o'*-and o'~ -convergence
coincide by definitions 2.2 and 2.3. Hence, o' "-lim #,, = # iff o'~ -lim #, =&,
for any sequence {z,} < X. Since ¢’ ~ p, this means o*-lim #, = & iff
o -lim #, = @ by definition 2.5; hence p™- and o -convergence coincide.
Conversely, if p"-convergence and p~ -convergence coincide, define o'(x)
— o(x)+ o(—=a); then o’ is symmetric, and from the inequality

o' {[min (k,, kp)]- (2 — @,)} < o {ky (@ — @n) } + o {ks (@, — )} with ky, ky >0,

which follows from the definition of p’, it is clear that o' ~ p.

Definition 2.6. If, for a given modular p, there exists a modular
o' ~ p such that p’ is symmetric on X, then p is called symmetrizable.

Example 2.1 exhibits a non-symmetrizable p in view of Theorem
2.1 and the fact that p"- and p -convergence do not coincide in the ex-
ample.

Definition 2.7. A point zeX is proper for a modular ¢ if for any

real sequence {a,}!, lima, — 0 implies limp(a,z) = 0. is proper on
q Ig) P 0 e p
N—00 N—>00

Y < X if every ¢ Y is proper for o. If o is proper on X, then p is simply
called proper.

The modular in Example 2.1 is not proper, but there do exist non-
symmetrizable proper modulars:

ExampLE 2.2. Let {f,}, n=1,2,..., be the sequence of convex
real continuous functions defined by f.(#) =« if >0, f,(z) = —nx
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if #<<0. Let X =  as in Example 2.1. In » introduce the modular g,
defined by

0, (@) = gy, (fi}) = > fula).

Clearly, g; satisfies M1 and M2. Now,

o0

Xy = |{m}eX: (Ha, p,f<0<a) ¥ fulwr) < +oo
and jfi(ﬁwi)< +°°}.

It is obvious that p, is proper on X . In X} consider the sequence
n n ®n
of elements {x,}, where

1
s ::(o,(),0,...,(),35,(),0,...).

k—1terms

. .1
lim g; (#,— {0}) = lim— = 0,
n—s00 n—soco N

but
kﬁ%%ﬁ%w%ﬂlﬁ
for any constant £ > 0. Hence, Qf—; lim %, = O0ew but g -lim @, does
not exist and thus g, is not symmetrizable on X, .
n

In general, a function sequence modular g; Wwill refer to a modular
defined by a sequence of functions {f,} on the space ®, as in Example
2.2.

LEMMA 2.3. Let X, denote the set of all xeX, for which x is proper
for o. X, is convex and origin-symmetric.

Proof. That X, is convex follows since for any real sequence {a,}
such that limea, = 0 it is also true that lim2aq, = 0, hence for =z, yefe

-0 =00

and 0 <a<<1,
o(a{(1—a)a+ ay}) < e{2a,(1— a)a} + 0(Z2anay) < o(2m,2) + 0(2¢ny),

so that
limo(2a,%) = limp(2a,y) = 0
N—00 N—>00
and (1—a)x+ ay is proper for g. The origin-symmetry of X, is obvious
from the definition of X,.
As the following example shows, Lemma 2.3 cannot be improved
to assert that the linear space X is closed with respect to o*-convergence



338 H.-H. HERDA

(or with respect to ¢~ -convergence) in general. This fact again contrasts
the more general non-symmetric modulars with the Musielak-Orlicz
modulars (¢f. Theorem 1.11 in [2]).

ExAmpLE 2.3. Let X =1,, the sequence space of absolutely sum-
mable real sequences with the usual norm

l&lly = Z la;|, where {o;} = wel,.
iz

Now, define a non-symmetric modular g on l, by setting o (z) = |jz||, +1
if infinitely many of the «; are positive, and p(z) = ||z||, otherwise. It
is easy to verify that o satisfies the conditions M1 and M2. Also, it is
evident that X, = X =1, and that # = {a;} ¢ X, iff all but a finite number
of the o; are equal to zero. Now put

1 l 1 1

Ly = 1 E ..,‘y,w,... y
1 1 1

Ty = 1 E ? ..,?,O,U,...

for all » =1,2,...; then

—1
lim g (2, — 2,) = lim ||z, — x,|; = lim

N—00 N—00 N—00 .
i=n+1

and all x, are proper for g, but z, is not proper for g.

LemMMA 2.4, If o*-lim @, =2 and o*-lim y, =1y, then we have
ot-lim (o, + Byn) = ax+ By provided a =0 and f=>0.

Proof. By hypothesis, there exist &k, >0 and k, >0 such that
limg{k,(2,—®)} =0 and lime{k,(yn—y)} = 0.

n—00 n—co

If a, >0, by M2,
Ak ks I ky
9[%“1111 (“;7—5—) {(an+ BYn) — (ax+ 59)}] < Q{?(afﬁn*— am)} k3

ko
+ Q{?(ﬁ?/n—' } = o{k1(Tn—2)} 4+ 0{ks(Yn—1y)} -0 a8 n—> oo,

ie., o"-lim(aw,+ fy,) = ar+pBy. If a or p or both are zero, the proof
is trivial.

By means of a closely parallel proof one obtains

LemMmA 2.5. If o -limx, =2 and o -limy, = vy, then we have
o™ -lim (a&, -+ fyn) = ax—+ fy provided a =0 and = 0.
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THEOREM 2.2, Lelt Xj +# {0} be a finite-dimensional linear subspace
of X;. If €1, ..., en is a basis of X}, then

18 ot -convergent (and also o -convergent) to

m
= Zﬁ.fe,
t=1 .
off Uma, =4 for t =1,2,...,m.
N—r00

Proof. The proof is by induction on the dimension ¢ of Xj. Assume
d = 1. Then there exists e, # 0eX; such that X; = {a’e,:a’ is a real

number}. , = Am,, €m 18 oT-convergent to 2’ = J,e, if there exists
k > 0 such that

m o {k (A, €n— A €m)} = U @ {k (Am, — Am) €} = 0.

N—->00 N—>00

Assume further that

i & (o, — ) # 03

N—>00

then there exists a subsequence {i,, } of {}, } such that

WM K (A, — An) = @ # 0.

V—00

Then
lim{a~—k(ﬁmn —An)} = 0.

Y—00

Since e, is proper for p,

lim ¢ {aey,— k(Am, — Am)em} = 0.

7—00

Sinee {4y, } is a subsequence of {4, } and

o { (A, — Am) €m} = 0,

N—s00

it follows that
lim g {k(Am, — 4m)em} = 0

P—00

because any subsequence of a convergent sequence of real numbers
converges to the limit of the original sequence. By M2,

0 3 am) < 00—k (A, — An) ém} =+ 0 {k(Am, — Am)em}.



Letting » — oo on the right-hand side, it follows that g{}ae,} = 0.
By M1, this means }ae,, = 0 and since {a # 0, it follows that e, = 0 X},
which is a contradiction. Hence lim#k(4, —in) = 0 and since k # 0,

—>00

limim_n = Ap. Conversely, if lim/'lmn = Am, then it follows (because e,
n—>00

N—>00

is proper for o) that, for any & > 0,
limg{k(lm”—ﬁm) Gt = 1
nN—>00

This establishes the theorem for d = 1. By the induction assumption,
in any (m—1)-dimensional subspace of X7 having basis e;, €y, ..., €, ;.

is pT-convergent to

iff lim4, =4 for ¢+ =1,2,...,m—1. By use of Lemma 2.4 it follows

N—00
that o*-lim(x,+#,) = o*"-limx, = 2 = «’+a"’, which completes the
induction proof for p*-convergence. The analogous proof for p~-conver-
gence uses Lemma 2.5 and is almost identical.

Theorem 2.2 shows that, on X; < X, p*-convergence and p -con-
vergence always coincide. By Theorem 2.1, this means that any modular
on any finite-dimensional subspace of X} is symmetrizable. It is also
clear from Theorem 2.2 that, given any two modulars g, and g, on X
and a finite-dimensional linear subspace Xj < X with Xf < X5 ~ X7,
then g, ~ 0, on Xj.

3. Non-symmetric modular norms.

Definition 3.1. For a given modular ¢ on X, the p-norm associated
with ¢ is the functional

le]| = inf{a >0:p (i:—) < 8}.

If ¢ is a pseudomodular, [lz|| is called the p-pseudonorm associated
with p.

Analogous to similar basic results in [2], the following can be derived
using only the properties M1, M2 and definition 3.1:

LemMA 3.1. If |jz|| ¢ @ o-norm on X, then

(a) [lz]| = 0;

(b) llwll = 0 iff @ = 0cX;
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() lle+yll < [lell+ llyll;

(d) for each xeX, |ax| is a non-decreasing function of a> 0;

(e) for [zl <1, o(x) < |l2|;

(f) if o(x/a) = a for some a >0, then |z| = a;

(g) if o(ax) is a continuous function of a >0 for every a’)eX:, then
e(@/llzll) = ||| for every @ + 0eX;.

Definition 3.2. For a given modular ¢ on X, a sequence {r,} < X
is said to be (g-norm)"-convergent to zeX (in symbols: | ||*-limz, = x)
if lim [lz,—| = 0. Similarly, {z,} is said to be (o-norm) -convergent

N—00
to zeX (in symbols: || [|7-limz, = z) if lim|z—a,| = 0. Finally, {z,}
N—00
is said to be (p-norm)-convergent to xeX if both | |[*-lima, — 2 and

| ™ -lima, = .

By part (e) of Lemma 3.1, || [|*-convergence implies ¢*-convergence
and || [[T-convergence implies o -convergence. Parts (a), (c), (d), (e)
and (f) of Lemma 3.1 also hold for p-pseudonorms; part (b) becomes
||| = 0 iff o(2) = 0 and part (g) holds for every ze X} such that |jz| + 0
in the case of a g-pseudonorm.

It should be noted that the condition that, given a sequence {,}
< X, there exists k£ >0 and xe¢X such that

im ||k (@, — ®)|| = 0,

-0
is equivalent to | ||*-lim, = #. This follows directly from definition
3.1. Similarly,

(HE > 0)lim ||k(x— x,)|| = 0
n—o00

is equivalent to | || -limx, = «. This situation differs markedly from
that encountered with modular convergence and strong modular con-
vergence (definitions 2.2 to 2.4). The connection between strong modular
convergence and modular norm convergence is shown by

LEMMA 3.2. For a given modular o on X, strong o' -convergence is

equivalent to | ||"-convergence, strong o -comvergemce is equivalent to
| I -convergence, and therefore strong p-convergence is also equivalent to
| |l-convergence.

Proof. Strong o*-limz, — z iff for every k >0,

lim g {k(z,—x)} = 0

N—00

iff (putting & = 1/e) for all ¢ >0,
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iff (Ve>0)(Tn)(Va=mn) of{wa—wm)/e}<e iff lim|z,—a| =0 and

| |*-lim®, = x. The second equivalence is proved quite similarly.
In the remaining discussion it is convenient to use

Definition 3.3. A subset ¥ < X is said to be p-strong (with respect
to a modular ¢ defined on X) if, for any sequence {x,} = Y, o*-limz, =«
implies strong o*-limx, = # and, for any sequence {y,} c Y, o -limy,
= y implies strong o -limy, = vy.

This condition is the generalization of condition B2 in [2] to non-
symmetric modular spaces. |

LeMMA 3.3. For a given modular p on X, o*-convergence is equivalent
to || ||*-convergence and o -convergence is equivalent to || || -convergence
on a subset Y X iff Y is p-strong.

The proof is immediate from Lemma 3.1 (e) and definition 3.3.

LeMMA 3.4. If the modular o is proper on Y < X, then, for the asso-
ciated o-norm || || and for a real sequence {a,}, lima, = 0 tmplies lim ||a, 2||
=0 for all zeY. o e

Proof. If lima, = 0, then for any ¢ > 0 and for any z#¢Y,

n—00

) x
lim o (an-m) =10
nN—00 £
because x is proper for p. Hence
lim ||a, x| = lim [mf{e pe8 15 Q(—) < s}] = (.
N—>00 M—>00 £

LeMMA 3.5. If {a,} is a sequence of non-negative real numbers such
that lima,, = a, where a is a real number, then

n—00
(a) of lim ||z, — x| = 0 and x is proper for o, then
N—00
limHanmn_‘aw“ = 0;
N—00

(b) ¢f lim |z —ax,| = 0 and x is proper for o, then

n—o00

lim ||ax — a,2,|] = 0.
n—oo

Proof. (a) By Lemma 3.1 (e¢),

llan @ — az|| < |l (2 — @) || + [|(0n — @)@ ||.
Since lim(a,—a) = 0 and x is proper for p, it follows by Lemma
3.4 that "
lim [|(a, — a)2|| = 0.

N—00
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Since {a,} is a convergent sequence, it is bounded from above, i.e.,
there exists a positive real number K such that 0 < a, << K for all x.

Then |ja, (2, —)|| < || K (2,—a)| for all n. But, by definition 3.1,
lim|z,—#|| = 0 implies lim ||K (2, —2)|| = 0, so that

N—00 N—00
lim ||a, (2, — 2)|| = 0.
n—o00
Hence
lim oy, 2, — az|| = 0. ‘

N—00

The proof of (b) is quite similar and is therefore omitted.

In non-symmetric modular spaces, the uniqueness of the norm |z||
cannot be established as in Theorem 1.22 of [2]. The difficulty is the
same as that encountered in trying to prove that the p*-limit of a se-
quence is unique, namely that o*-convergence does not imply o -con-
vergence and conversely.

4. Symmetrizability of single function modulars. As stated before,
if o is the linear space of all sequences of real numbers, a single funection
modular on o is a modular o; defined by

orl@) = o)) = D) f(m)

for all # = {@;}ew. Here f is a real-valued function and it is understood
that o; as defined satisfies modular conditions M1 and M2. A set of neces-
sary and sufficient conditions on functions f which give rise to modulars g;
on o is easily shown to be (with reference to M1 and M2) that (a) — oo
<f(#) < 4005 (b) f() =0 iff @ =0; and (¢) faz+ py) <f(@)+f(y)
provided a+p =1 and a, = 0.

In view of Example 2.3 and other pathologies of non-symmetrizable
modulars, it appears useful to derive concrete sufficient (or necessary
and sufficient) conditions for a given modular on a given space to be
symmetrizable. In that case, the given modular is convergence-equi-
valent to a symmetric modular to which the Musielak-Orlicz theory
in [2] applies. The general symmetrizability problem appears to be very
difficult. However, the following special result can be established:

THEOREM 4.1. If o; is a single function modular on o and f satisfies
the conditions
(1) f(x) < + oo for || < M, M >0 a constant, and
(i) 0< K, — lim 4 ® < Tim 1@
oot J(—@) a0t f(—)
then o; is symmetrizable.

:K2< +OO,

Colloquium Mathematicum XVIIL.2 12



344 H.-H. HERDA

Proof. Since 0 < K, = lim f(x)[f( —x),

x50+
sup inf J(@) = K; >0.
k o<z<k f(—x)
Hence
(Ve >0)(HK' = K, < M) inf —JL(E)—— > K,—¢,
0<w<K’f(““a"')
i.e.,
11
(Ve: 0 << K'< ﬂ/l)—fl—)—-" > K,—e,
J(—=)

W_hich implies (Vz: 0 <2< K') f(x) > (K, —¢)-f(—x). Also, since
Tim f(a) [f(—a) = Ky < + oo,
f(@)

inf sup — = [y < | oo,
k o<z<k f(—)

Hence

(Ve >0)(HK"” = K'< M) sup - i)
0<z<k" f(—m)

< K, +te,

i.e.,

(Va: 0 << K" < M)
which implies (Va: 0<a< K"”) f(z)< (Kyte)f(—m). Now let
K = min{K’, K''}; then
(Ve>0)(HE)(Va: 0< o< K)(K,—e) f(—a) < f(z) < (Ky+e) f(—ux).

Choose ¢, = K,/2 < K,. Then

(T K, = Ko(eg) > 0)(Var: 0< x< K,) iiif( —a) < f()
- (zfz+ 125) f(—a) < 2Ky-f(—0),

go that (Va: 0 < o< K,) f(x) < 2K, f(—ax) and also
2

(Va: 0 <o < Kp)f(—ax) < —-

f(x).

Let {x,} = {mg)} < o be any sequence. To prove that o, is symmet-
rizable it suffices (by Theorem 2.1 and definition 2.6) to show that
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o/ -lima, = 0 implies ¢;-lim», =0 and that o, -limz, = 0 implies
of -lima, = 0. Assume that o/ -lima, = 0, ie.,

o0

(€ k > 0)lim g, ({kaf}) = lim ' f(kaid) = 0.
nN—-00 Ne—>00 i=1
Hence
(V6> 0)(Hng)(Vn = 2 f(ka)) < 6.

Now choose 6 = 0, so small that (Hz, < 0)f(x,) > 6, and that
(Hay > 0)f () = dy; this is possible because f(x) = 0 iff ¢ = 0. It fol-
lows that

(L ngy) (V10 = ) (V4) [Teakd| < max{—x,, &,}.

Define g = max{—m,, z,}/K, >0, where K;< K, is chosen so
small that p > 1; this can be done because no lower bound on K, was
specified earlier. Thus
koo ;

—-wﬂ); < K,

() (V12 ) (V)|

and therefore

(V= 1) (Vi) Zf(_Tk as“)
i=1

<max[2K2, : ] Zf( a?(‘)) max[th, ] Zf (kaidy,

the last inequality following because p >1 and f satisfies the inequality
flaz+ By) < f(x)+f(y) for a4 p =1 and a, § = 0. Since max [2K,, 2/K,]
is a constant depending only on the nature of f, and

co

lim Z flkalD) =0

M—>004—1

was assumed, one can conclude that

o0

bk
lim f(———mi?):(),
f—00 Y w

and hence o -limw, = () An almost identical argument shows that
o7 -limax, = 0 implies o Flima, = 0.
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5. Outline of related research. There are three main directions to
this research. Firstly, symmetrizability conditions for function sequence
modulars and other types of modulars on the space » and on other spaces
are sought. Secondly, the properties of modulars which in addition to
satisfying M1 and M2 are defined on a universally continuous semi-
ordered linear space are being investigated. This work is based on a paper
by Koshi and Shimogaki [1]. Finally, modulars which satisfy all con-
ditions of Nakano’s modulars [3] except for symmetry are being studied.
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