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OF INTEGRABLE VECTOR-VALUED FUNCTIONS
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Let D be the open unit disc in the complex plane C. It is well known
that to every real function ¥ harmonic in D there corresponds exactly one
real harmonic function v such that v (0) = 0 and u+iv is analytic in D. The
function v is called the harmonic conjugate or the Hilbert transform of u and
denoted by @@ or Hu. It is evident that H can be extended to a linear operator
on the space of all complex-valued harmonic functions in D.

If f is a trigonometric polynomial

fréy= Y xrMed,  xeC,

k=—n

then

Hf (ré*) = —i z": sgn (k) x, r'*l &,

k=—n

If we restrict ourselves to the unit circle T then

(1) Hf (") = —i Y sgn(k)x,ée™
k=-—n

and, by M. Riesz theorem (cf. e.g. [4] p. 54),

(2) IH]fNl, < AplIfll,, 1<p<oo,

where ||f]|, denotes the LP-norm with respect to the normalized Lebesgue
measure m on T. In other words, H extends to a continuous operator on
LP(m). 1t is easily seen that this extension coincides with boundary values of
the harmonic conjugate of the harmonic extension to D of a function from
L? (m).

(1) makes perfectly good sense if we allow x,e X, X being a complex
Banach space. If X is a Hilbert space then the M. Riesz theorem holds just
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as in the scalar case but, on the other hand, if for instance X contains /! or
I* uniformly then H is bounded for no p (cf. [1]). In this way one arrives at
the problem of determining all Banach spaces X for which the Hilbert
transform is bounded. Some equivalent formulations of this problem may be
found in [1]. Recently D. L. Burkholder [2] has found a geometric condition
on X that implies the boundedness of H. It is, so far, an open problem
whether his condition is also necessary.

In this note we consider weighted L?-spaces of vector-valued functions
and show that admitting weights does not change the class of Banach spaces
for which the Hilbert transform is bounded. Our result generalizes the Hunt-
Muckenhoupt—Wheeden theorem [5] to the vector-valued case. The proof is
based on the proof of the scalar case presented in [3]. The main difficulty in
the formal extension was the proof of weak 1-1 type of a maximal singular
operator H* corresponding to H. It was shown by Burkholder in [2] that
under his geometrical assumption on the space X, the operator H* is of
weak type 1-1, so if it were shown that his condition was also necessary then
our theorem could be easily derived from his results.

Before stating the theorem we will need some notation.

We will call a function w: T— R a weight function if w is nonnegative,
m-integrable and not identically zero.

For a weight function w and a Banach space X by LP(X,w) we will
denote the space of all functions f: T — X, Bochner-integrable with respect
to the measure wdm and such that

JIf@IPw(e)dm(r) < x.
T

We will also use: I?(X)=I’(X, 1), ’(w)=I?(C,w), I’ =I?°(C, 1.

For a subset E = T we will use |E| = m(E). T will be identified with the
interval [—n, n) and functions on T with 2r-periodic functions on R.

Now we can state our result.

THEOREM. Ler w, be a weight function and assume that for some
poe(l, x) the Hilbert transform H is bounded in L*®(X, wo). Then for every
weight function w and pe(l, «c), H is bounded in L?(X, w) if and only if w
satisties the Muckenhoupt condition

(A,) sup(]™* fwdm)"/?(l1|~* fw™?/Pdm)'/? < + o0
I i I

where I.ranges over all subarcs of T and 1/p+1/p' = 1.
For the proof we will need the following two theorems:

THeoREM A (Muckenhoupt [7], cf. also [3]). The Hardy-Littlewood
maximal function is an operator of strong type p-p with respect to the measure
wdm if and only if w satisfies (A)).



HILBERT TRANSFORM 105

(The H-L maximal function for feL! is defined as

t+h

M. ()= sup | [ f(s)ds|)
he(0,®%) ¢~ h

THeorReM B (Hunt-Muckenhoupt-Wheeden [5], cf. also [3]). The
Hilbert transform is bounded in L*(w) if and only if w satisfies (A,).

Evidently Theorem B implies that if H is bounded in L?(X, w) then w
satisfies (A;) so we only have to prove the inverse implication.

LeMMA 1. Under the assumptions of the Theorem, H is bounded in
L (X).

Proof. For se T denote by W, the rotation operator (W, f)(t) = f(t—s).

If f is a trigonometric polynomial then for every se T, W, fe L*°(X, wo) and
H(W, f) = W, Hf. Then

Iwoll I1HSA I3, = [ [ICV; Hf)@I”° wo (1) dm(t)dm(s) < C™liwglly 11117

- ’
pO(X) "T T LPO(X)

where C is the norm of H in L°°(X, wy).

Hence it is enough to prove the Theorem under the assumption wy = 1.
Before we proceed with the proof we are going to need some more
notation.

In the sequel we will always assume that f is an X-valued trigonometric
polynomial.
For ¢€(0, n) let

2r-

H N0 =20 [ fectghsds

and

(H*f)(t) = sup |I(H /).

e(0,m)

For ge L' (X), by g(re") we will denote the harmonic extension of g into
D (by the Poisson kernel) and by N, the radial maximal function

N, 1) = sup |ig(re"|l.

re0,1)

C will stand for any constant and it may change during the proof.

LEMMA 2. The subadditive operator H* is of strong type po-po.

Proof. Put E(r,t) = |(H, f)(¢")—(Hf)(ré")|| where ¢ = 1—r. Estimat-
ing as in [6], p. 77, we get E(r,t) < CM, ;(t). So
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Since N,(t) < N, (¢t) then, by Lemma 2.4 of [6], we have

4) N,(t) S My, t.
From (3) and (4) we get
(&) HH*f 1l < ClUIMypyllpe+ 1M yapyllpg-

By the strong type po-po, of the H-L maximal function, from (5) follows

H*fll,, < CIISIl +IIHSf |
and thus, by the assumption,

IH*fllpq < CULAN 5oy,

Lemma 3 (Calderon-Zygmund; cf. eg. [8]). Let gelL', g=>0 and
a > |lgll;. Then there exist disjoint subsets F, Q= T, FUQ =T such that
g(1) < a for almost all teF, Q = )1, where 1, are pairwise disjoint arcs such

that a <|I,|7' [g < 2a.
I'l

LP0(x) LPOcx)

LEMMA 4. The operator H* is of weak type 1-1.

Sketch of the proof. Using Lemma 3 for the function ||f(r)]| and
o> IIfIIL,m we split T into F and © and put

(@ for teF,
fl(t)=%|1nl"‘“‘f for tel,, J2=Sf-N-

In
Then H*f < H*f, + H*f,, so
m{H*f >a} <m{H*f; > a/2}+m{H*f, > a/2}.
For f, we have
WA, . = £||f1||"°+ ‘!IIIII"’ <o !Ilfll+(2a)p°m(9).

LPOx)

Since [l <a™* fIIfll, 12/ <a™* fllfIl and so
I, 2
P po—1 Po _Po-1 -1
LAl 0 < %07 JIAI+2700"7" {11 = o™ 111

By Lemma 2 and the above,
m {H*f; > a/2} < (2/2)"° Coa™* ™ || fll 1, = (C/1f 1] 1 -

The estimate of m{H*f, > a/2} is done exactly as in the proof of
Theorem 4b of [8] p. 42 with the change of moduli to norms.

Lemma 5 (Coifman—Fefferman [3]). Condition (A)) implies

(A,) There exist constants C, 6 > 0 such that for every subarc I — T and
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every measurable subset E — 1 we have

(fwdm)(fwdm)™' < C(E||I|™).
I

E

LEMMA 6. Assume that w satisfies (A). Then to every pe(l, o) there
corresponds C, such that

WH* fll o, < CollM gyl

Proof of Lemma 6 is the formal extension of the proof of Theorem III of
[3] to the vector-valued case. The only problem is the weak type 1-1 of the
operator H* which was proved in Lemma 4.

Lemma 6 together with Theorem A imply

H* fll sy < Collf M o
To end the proof it is enough to show that for almost all te T we have
(6) (H* ) (1) = I(H ) (Il

This can be done by extending to the vector-valued case the theorem about
almost everywhere convergence of H,f (Th. 4c [8]) or, simplier, in the

following way: For every x*e X*, ||x*|| =1 and for almost every te T we
have

(7 (H*f)(t) = sup |x* (H, f) ()| = sup|(H.(x* of))()|
> lim(H, (x* o) 0] = (H(x* /)] = |+ (HN ).

LP(w)’

Now, since Hf is continuous, Hf (T) is compact, and so we may choose
a countable sequence of norming functionals for this set and thus prove (6)

by (7).
The author is grateful to Professor P. Wojtaszczyk for his helpful advice.

Added in proof. After this paper was accepted for publication, it was
proved by J. Bourgain (in: Some remarks on Banach spaces in which martin-
gale difference sequences are unconditional, Ark. Mat. 21 (1983), p. 163-168)
that Burkholder’s condition is equivalent to the boundedness of the Hilbert
transform; hence results of this paper can now be essentially derived from

[2].
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