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CONTINUOUS MEASURES AND ANALYTIC SETS*

BY
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0. Introduction. Let I" be a countably infinite abelian group, and G its dual
group. A subset S of I' is called a w-set in I’ if there is a continuous
complex-valued measure u in G such that || > 1 everywhere in S. (The name
refers to the work of Wiener [11], apparently the first on Fourier-Stieltjes
transforms of continuous measures; by definition, ji(y) = {7du.) Regarding the
space M (G) as a subset of a dual space C*(G), it is of type F, in the
w*-topology. This gives the easy half of our main result.

THEOREM. In the metric space 2", the class wI” of all w-sets is an analytic set
but not a Borel set.

A previous work on classes contained in 2! concerns the class # of Riesz
sets [9]; the class #, which plays the role of negligible sets, is co-analytic but
not Borel. The present theorem depends on the harmonic analysis on certain
non-locally compact topological groups established by Varopoulos [10], pp.
112-131 (see also [7]). For certain groups I" (type I) this dependence is explicit,
and for the remaining groups I', the analysis of [10] is adapted by a ruse.

Remark. Every Sidon set is a w-set [2]. On the other hand, it is easy to
prove that Sidon sets are a class of type F, in 2'. So our Theorem shows that
not every w-set is Sidon. This is known and can be proved in many ways (cf.,

e.g., [6]).

1. Preliminaries. We shall first reduce the main result to certain special
cases.

LEMMA 1. Let @ be a homomorphism of I onto a group I';, and S, = I',.
Then S, is a w-set in I'y if and only if ¢ '(S,) is a w-set in T.

Proof. Suppose that ue M (G,) and |1| > 1 on §,. (We have written G,
for the dual of I',.) Then the dual mapping ¢* is a homeomorphism of G, into
G, and :

(@*1)"(s) = il @s),

whence |(@*u)"| = 1 on ¢~ 1(S,), and of course ¢*u belongs to M (G). In the
opposite direction, we begin with pe M (G) and replace u by 4 = p+4, so that
A>0 on I' and A>1 on ¢ (S, Let A be the kernel of ¢,
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let Lim be a Banach limit over A, and observe that there is a measure ¢ such
that

6(x) = Lim A(x +7).

b4

What we need to know about ¢ is that
o(E) = M(En AY)

for each Borel set E, and 6(y) is contained in the convex hull of the set 1(y + A)
for each y. Identifying A* with G,, we conclude that S, is a w-set in I,.

We now divide the groups I' into two classes:
(I) For every integer m=1, 2, 3,..., I'/mI" is finite.
(IT) For some integer m > 1, I'’/mI’ is infinite.

2. Groups of type L. In this case the subgroup of G defined by the equation
mg = 0 is finite for each m. Therefore, G is an I-group and contains a perfect
Kronecker set K (see [3], pp. 566-570, and [8], pp. 99-102). We suppose in fact
that K is a Cantor set. We define a map from closed sets E of K into 27 as
follows:

xeB(E)<>|x—1]<1/3 on E.

The mapping is lower semi-continuous in the following sense: if imE, = E in
the Hausdorff metric, then

B(E) < liminf B(E,).

As for real-valued lower semi-continuous functions, whenever U is open in 27,
the inverse image {E:B(E)e U} is then of type F, in 2", and in particular the
inverse image is Borelian. We shall show that B(E) is a w-set if and only if E is
uncountable, or in different terms: B(E)e wI'<>E is uncountable. By a theorem
of Hurewicz [4], the class of uncountable closed sets in 2° is analytic but not
Borelian, whence wI” is not Borelian. Clearly, B(E) is a w-set when E is
uncountable, since E supports a continuous probability measure. For the more
difficult implication, we first summarize the necessary results from [7] and
[10].

Suppose that X is a 0-dimensional compact metric space and that S(X) is
the (metric) group of all unimodular, continuous functions on X.

(a) Every continuous character of S(X) is in the subgroup generated
algebraically by the evaluations at the elements of X.

(b) Bochner’s theorem is valid for S(X): every continuous positive-definite
function on S(X) is represented as an integral over continuous characters on S.
Strictly speaking, the continuous characters have to be turned into a measur-
able set; this quibble does not affect the remaining argument. See also [1].

(c) Let H be an abelian group provided with an invariant pseudo-metric d,
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let (Y, u) be a finite measure space and S*(Y) the group of unimodular,
u-measurable functions on Y. Let T be an algebraic homomorphism from
H into S$*(Y). One of the following two cases must occur:

(c,) There is a measurable subset Y, = Y, u(Y;) > 0, so that T is con-
tinuous as a mapping from H to S*(Y)).

(c,) For every neighborhood V of the identity of H, the convex hull
co(T(V)) contains the function 0 in its closure (in L' (u), for example).

We can now prove that when B(E) belongs to wI', then E must be
uncountable. Suppose, then, that u is a continuous signed measure such that
=21 in B(E). In I' we introduce a pseudo-metric d by the formula

d(y, 0) = sup{ly(g9)—1]: geE}.

We apply (c) to the measure space (G, |u|). Now B(E) is a neighborhood of 0 in
I’ (using the pseudo-metric d) and for every function f'in the convex hull of B(E)
we have

§Uf11dpl = Reffdu > 1

(since the last inequality is true for characters in B(E)). Therefore, alternative
(c,) must be rejected, and (c,) accepted. We now define

p(x) = | xldul, xerl,
Yy

so that p is positive definite on I', and continuous for the pseudo-metric d.
Since K is a 0-dimensional Kronecker set, E is one as well, and p determines
(by uniform approximation) a continuous positive-definite function on S(E).
Comparison with (b) in the summary above shows that

p(x) = [7dA

with a measure A concentrated in the algebraic subgroup generated by E. If
E were countable, then we would have |y||Y1 = 0, whence

p(1) = |ul(Y;) = 0;
this concludes the proof for groups of type I

3. Groups of type IIL In this case there is a prime p such that I'/pI is
infinite, for the inequality

o(I’'/mym,I) < o(I'/m,I')-o('/m,I')

is valid for all pairs of integers m,, m, > 1. Then I'/pI’ is an infinite sum Z},
and, by Lemma 1, we can assume that I' is one of these groups.

In this case G contains a perfect K ,-set F, (see [3] and [8]); this means
that every continuous function on F, to the group of p-th roots of unity is the
restriction to F, of a continuous character of G. Now F, is homeomorphic
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to a Cantor set, and therefore to a union of three disjoint Cantor sets. Thus F,
can be represented as a product

F1=FX{1,2,3},

F being also a Cantor set. To each closed set E of F we attach objects a(E),
B(E), and B(E).

(i) a(E) is the subgroup of G generated algebraically by E x {1, 2, 3}, and
B(E) is the closure of a(E) in G.

(ii) B(E) is the subset of I' defined by this condition: for each x in E,
y(x x i) = 1 for at least two numbers i = 1, 2, 3. B(E) takes the place of the set
B(E) used before. (Attempting to follow the method used for groups of type I,
we would consider the characters on a certain group — but that group is
discrete.) The analytical part of the proof is contained in

LEMMA 2. There exists a sequence (A,) of probability measures in B(F) such

that Z.(g)—0 on B(F)\a(F).

Proof. For each k=1, 2, 3,... let (4,,...,4,) be a partition of F into
disjoint closed sets of diameter < k~1. Let y(i, j) be a continuous character of
G such that y(i, j) = o, =exp(2rnip~!) in Ajxi and 1 in the remainder of
Fx{1,2,3}=F, (i=1,2,3,1<j<r). This recipe determines the value
(vG, j), g) for each g in B(F). Finally, let ' '

A= * [3(0)+5((1, 1) +8((2 ))+50G. ).

j=1
A constant ¢, <1 is defined by
¢z = (7+cos2n/p)/8.

Suppose that g € B(F) and limsup |4, (g)| = n > 0, while ey < n for some integer
M = 1. For infinitely many k =1, 2, 3,..., fewer than M of the factors of Ik
have modulus < c, at g. Since the value of y(i, j) is always a p-th root of 1, the
equations (y(i, j),g)=1 for i=1,2,3 are valid for every j with at most
M exceptions. Let I', be the subgroup of I' generated by the characters y(i, j)
introduced at the k-th step. Then there is an identity

M
(v, 9) =[I7(g) for every yer,,
1

with elements g, of F, and numbers e, = 0, 1,...,p— 1. This holds for infinitely
many integers k, but since g € B(F), it is clear that a single relation of this kind
must hold for every y in T, ie., gea(F).

We can now complete the main theorem for II. The mapping E — B(E) is
continuous, in fact homeomorphic from 2" to 2. When E is uncountable, we
take a continuous probability measure v in E and set

1 =v®(8(0)+5(1)+5(2)),
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whence Rejfi > 1 in B(E). Suppose, in the opposite direction, that B(E) is in wI"
and 4=>1 in B(E) for some continuous measure u in G. Since
B(E)+ B(E)* = B(E), this will remain true for a continuous measure concen-
trated in S(E). We apply Lemma 2, replacing F by E throughout. For the
sequence (4,) of probability measures in B(E),

(I; A (g)n(dg) = ; (X)) Ay (dy) = 1

and Lemma 2 confirms that |u| has positive mass in a(E), whence a(E) — and
consequently E itself — must be uncountable. The theorem of Hurewicz cited
earlier then shows that wI' cannot be a Borel set in 2.

In the proof just concluded, the mapping of E to B(E) is a homeomor-
phism, but for groups of type I it is possibly discontinuous. (That has no effect
on the succeeding argument.) To remove this defect, let ¢ be a continuous
measure on K, and ¢t a number in (0, 1/3) such that

{g:lx(g99—11=1t} =0 for each y in I.

There is a closed set K, = K such that ¢(K,) > 0 and y—1 # ¢t in K, for each
x- We then define B'(E) for E = K, by the inequality |[y—1| <t in E. This is
a homeomorphism from 2X! into 2" and the remaining steps are the same.
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