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BOUNDARY CONVERGENCE OF FUNCTIONS
IN THE MEROMORPHIC NEVANLINNA CLASS
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C. ANDREW NEFF (YORKTOWN HEIGHTS, NEW YORK)

The aim of this paper is to generalize, to meromorphic functions, a col-
lection of results about holomorphic functions which began with Fatou, and
to which extensive contributions have been made by Stein and more recently
by Nagel, Stein and Wainger.

The main result (Section 4) is a maximal function estimate for mero-
morphic Nevanlinna functions, which is analogous to the maximal function
estimate in [23] for holomorphic Nevanlinna functions. Using this estimate
we can then conclude that, in domains with C? boundaries, functions in
the meromorphic Nevanlinna class have limits at almost every point of the
boundary, not only in classical non-tangential approach regions, but even
in the larger admissible approach regions considered in [34] and in the still
larger approach regions considered in [23] which can be defined in compact
domains of finite type. In the case of admissible approach, this conclusion
has already been proved by Lempert [21]; but the maximal function esti-
mate which we derive gives a quantitative result which this paper does not
provide.

Section 3 deals first with the special case of non-tangential approach,
since the proof of the general result depends on estimates which are derived
there. The proofs of these estimates depend in turn on an explicit upper
bound on the size of the Green’s function for a C* domain in R® (n > 2),
which is derived in Section 2.

The proof of the main estimate depends also on a new theorem in value
distribution theory, which is proved at the end of Section 4. This theorem
puts a lower bound on the (2n — 2)-dimensional Hausdorff measure of that
part of the zero set of a holomorphic function, f, contained in a polydisc
D(2%ry,...,7,), given that f vanishes at a particular point of D, and that
f has no zeros in a slightly smaller polydisc D' C D.

1. Introduction. Since the proof of our theorem depends on a good un-
derstanding of analytic hypersurfaces and integration-over them, we present
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here a brief review of some of the important results. Although many of these
are standard, we will at least state them, for the purpose of reference later in
the paper. Following this we will review some notation and theorems about
maximal functions, and define the non-tangential and admissible approach
regions. Finally, we define the meromorphic Nevanlinna class.

We shall use the following standard notation. If 2 C C" is a domain,
O(0) will represent the class of holomorphic functions on 2. When it is
necessary to emphasize one particular coordinate we will often write z =
(2',2,) for a point of C* where 2/ = (z,...,2,1) € C*"'. The zero
set of a holomorphic function f will be written x s, B(2;r) will represent
the ball of radius r and D(2;7y,...,7,) the polydisc with radii ry,...,7y,
centered at z € C". For shorthand we may write D(z;7) = D(z;7',r,) =
D(z;7,...,7,). CP™"! will denote (n—1)-dimensional complex projective
space and 7, : C* — CP™"! the canonical projection. We shall also need
the constants

wn=7"2|M(nf24+1) and o,y = nwy,.

These are respectively the volume of the unit ball and the area of the unit
sphere in R™.
We begin with the following structure theorem.

THEOREM 1.1. Suppose 2 C C" and f € O(2). Then either xy = 0 or
both of the following hold:

(1.1.1)  xjs has Hausdorff dimension 2n — 2.

(1.1.2)  The set of points z € xs that do not have a neighborhood U,
such that U, N x; is a complez (n — 1)-dimensional manifold, has
Hausdorff dimension at most 2n — 4.

The set in 1.1.2, Sy, is the singular set of x s, and the set x;— S, denoted
by X7, is the set of regular points of x;. See [10] and [5]. We shall write
Hy(E) for the Hausdorff k-dimensional measure of a set E.

Integration with respect to Hausdorff measure, although conceptually el-
egant, is in general computationally quite difficult. The fundamental impli-
cation of Theorem 1.1 is that integration over x; with respect to Hausdorff
(2n — 2)-dimensional measure is exactly the same as integration over the
smooth manifold xj with respect to surface measure. For this latter quan-
tity we have explicit expressions in terms of coordinate charts and their
derivatives. This leads to the rather remarkable formula:

THEOREM 1.2 (Wirtinger). Let f(2) be a holomorphic function defined in
a neighborhood of the closure of some open set U C C". Define the exterior
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(1,1) form
. n
¢ = % Zdz,- Adz;.
i=1

Then the (2n — 2)-dimensional volume form on the manifold x3} is ezactly

n
" (n—=1)= (/2" N dzj A dz;.
k=1j#k
In particular, for every measurable function ¢ on x; and any open set U C
C" we have

(121) [ @(2)dHa2(2) = (/2" [ @)Y N\ dziAdz;.

xgNU x;nU k=1 j#k

Here ¢"~! means pAPA...Ap (n—1 times) and A, dz; AdZ; represents
the exterior (n — 1,n — 1) form

dzy ANdZy A ... ANdzpy ANdZk—1 ANdzgypy AdZkpa N ... ANdzy ANdZ,.

Theorem 1.2 can be easily generalized to analytic varieties of arbitrary
dimension with any Hermitian metric. The reason that it is stated here only
for varieties of codimension 1 with the standard Euclidean metric on C" is
that this is the only case of the theorem we shall use. For a detailed proof
of our special case see [28] (p. 211). For a sketch proof of the general case

see [8] (p. 5).

DEFINITION 1.3. Let f(z) be holomorphic in a neighborhood of 2° € C".
The multiplicity of f at 2°, written 7;(2°), is defined to be the degree of
the smallest non-zero monomial in the power series expansion of f at 29, i.e.
if f(2z) = 3|4>0 8a(z — 2°)* near 2%, then

74(z%) = min{lal : aq # 0} .
Recall |a| = a3 + ...+ an, 2* = z{*...2%* and each ¢; is a non-negative
integer. '
In order to really calculate using Theorem 1.2 we need the following;:

LEMMA 1.4. Let the function g(2) be continuous in the polydisc D(0;r) =

D(0;7',7,), and let the (n — 1,n — 1) form w be defined in D(0;r) by
w=a(21,...,2pn-1)dz1 AdZ1 A .. . Adzp_1 ANdZp

where the function a(z1,...,2,-1) is continuous in the polydisc D(0;r') C
C"~1. Suppose that f(z) is holomorphic in a neighborhood of the closure of
D(0;r). For each 2% = (29,...,22_,) € D(0;r') we let zi(z°") be the points
of intersection (arranged in some order) of the complez line {z€ C" : z; =
2.y 2n1 = 25,1} with the set x; N D(0;7), and we let y}(23(2°")) be the
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multiplicity (in the sense of one complez variable) of the function f(2°',2,)
(thought of as a function of the single variable z,,) at the point z{,(zo'). Then

[ 9@mw= [ Y oG, 4" E ).

xsND(0;r) D(o;r') J

Proof. See [28].

Using Theorem 1.2 and Lemma 1.4 we can prove the following result
which is essential to the proof of our main theorem. For details of the proof
see [26].

THEOREM 1.5. Let f(z) be holomorphic in some open set U C C". Then
in the sense of distributions, (2r)~1Alog|f| is the Riesz measure associated
with x; “counted according to multiplicities”. More precisely:

(151) o= [ Ap()loglf()dVan(z) = [ o(2)r/(2) dHan_a(2)
U xyNU

for any smooth function ¢ with compact support in U. (Here dVa,(2) ts the
Fuclidean volume element on C™ ~ R?".)

We will need one more theorem about zero sets of analytic functions. It
will allow us to conclude that the (2n — 2)-dimensional Hausdorff measure
of xy N B(29;7) is “large” compared to the radius r if 29 € xs. To state the
theorem we first define some notation.

DEFINITION 1.6. Let f(2) be holomorphic in the ball B(0;r) C C". For
0 < r < Ry weset xs[r] = xyNB(0;7) and ns(r) = (wen—2)"Han—2(xs[r])-
We will also use the function vy(r) = r2=2"n(r).

THEOREM 1.7. With the notation above, for fized f the function vy(r) is
increasing in v and lim,_o v¢(r) = 74(0).

Proof. See [8].

COROLLARY 1.8. If f is holomorphic in the closure of B(2°;r) and
f(2°) = 0, then

(1.8.1) Hon—2(xs N B(2% 7)) > wan-27,(0)r**~% > wy, o722,

We now leave the realm of complex varieties to review a few theorems
in real analysis that we will need.

Suppose we have a measure space (X, m) which is also a separable metric
space, and a collection of subsets B(z;r) parameterized by z € X,0 < r <
0o. We will call this collection a family of balls if they satisfy the following
five conditions for some fixed choice of constants ¢ > 1 and K > 1:

(1.9.1) Each B(z;r) is an open bounded set.
(19.2) m(B(z;r))>0 VzeX, 0<r<oo.
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(1.9.3) B(z;ri1) C B(z;rg) if r <.
(1.9.4) If B(z;r1) N B(y;r2) # 0 and ry > r; then B(y; r2) C B(z;cry).
(1.9.5) m(B(z;cr)) < Km(B(z;r)) Vz€ X,0< r < 0.

For our purposes these balls will be subsets of a manifold defined by
some metric.

DEFINITION 1.10. Let f be a locally integrable function on X. The
mazimal function of f subordinate to the collection B(z;r) is defined by

(1.10.1) (Mf)(@) = sup(m(B(zim)™ [ 1f(y)] dm(y).

B(z;r)

The essential properties of a collection of balls and their maximal func-
tion are given in the following two theorems.

THEOREM 1.11. There is a constant A = A(c, K) > 0 such that whenever
Y is a subset of X, and Y is covered by a collection of balls, i.e. Y C
UaB(Za;Ta), then there is a countable disjoint subcollection B(z;;r;) (i =
1,2,...) satisfying

(1.11.1) m(Y) < Am(U B(z.-;r,-)) =AY m(B(zi;r:)).
i=1

i=1
THEOREM 1.12.

(1.12.1) For every 1 < p < oo there is a constant A, = A,(c,K) > 0
such that for all f € LP(X)

M fllp < Aplifllp
(i.e. f— Mf is bounded on LP(X)).
(1.12.2) There is a constant Ay = Ay(c,K) > 0 such that for all
feLY(X)andallA>0

m{z : Mf(l') > A} < Al”f“l/’\
(i.e. f = M is weak-type (1,1)).
This will clearly remain true if we replace f by a finite measure g, and

|| £1l1 by |||l the total variation of u. For proofs of these theorems see [33],
Ch. 1.

Now let 2 be a bounded domain in C" with boundary 92 which is
a manifold of class C?. For each z € 2 we write §(z) for the Euclidean
distance, dist(z,d42), from z to the compact set 8f2. For ¢ > 0 we define
the subdomain
R.={z2€2:6(z)>¢}.
For z € £, we may sometimes write §.(z) = dist(z, 912,).



482 C. A. NEFF

Since 812 is class C? there will be some &g such that for every 0 < ¢ < &,
812, is also a manifold of class C2. Moreover,if 0 < ¢ < €9, and if 0 < §(z) <
€0, then the orthogonal projection, 7.(2), of z onto 02, is uniquely defined.
(We will usually abbreviate mo(z) by 7(2).) For each ( € 812 the classical
non-tangential approach region, or cone, with aperture a > 0 is defined by

Fa(Q) = {z € 2:]z— ¢l < (1 +)8(2)}.
It will also be important to consider the truncated cones
I'=r,-92, (0<h<ep).
For each 2z € 2 we define
To(2) ={( €092 :z € I({)}.

T,(2) is the “non-tangential projection” of z onto 82. We will denote sur-
face measure on the manifolds 042 and 32, by do(() and do.(() respectively.

A function f(2) defined in a domain 2 C C" is meromorphic if cor-
responding to each w € 2 there is a neighborhood U, and two coprime
holomorphic functions g,, and h,, on U, such that f(z) = gy(2)/hw(z) for
all z € U,,. Since the ring of germs of holomorphic functions at w is a unique
factorization domain, g,, and h,, are uniquely defined up to a multiplicative
unit in this ring. Thus the following definitions make sense:

(1.13.1)  wis a regular point of f if h,,(w) # 0.
(1.13.2) wis a pole of f if hy(w) =0 and g,(w) # 0.
(1.13.3) w is an indeterminate point of f if h,(w) = gy(w) = 0.

(1.13.4)  y5(w) = 7g,(w) — Y, (w)-

The set of regular points, poles and indeterminate points of a meromor-
phic function f will be denoted by R(f), P(f), and Z(f) respectively. As in
the case of holomorphic functions, x; C R(f) will denote the set of points
z where f(z) = 0.

For a general domain 2 C C"(n > 2), meromorphic functions cannot
always be factored into the quotient of two globally defined holomorphic
functions. Even pseudoconvexity of §2 is not enough to guarantee that this
is possible. However, if {2 is convex, then any meromorphic f can be written
as g/h where g and h are holomorphic in 2 (see [19], Ch. 6). Thus we can
easily use a standard partition of unity argument, along with the fact that
Z(f) has zero (2n — 2)-dimensional measure, to extend Theorem 1.5 to

COROLLARY 1.14. Let f(z) be meromorphic in some open set 2 C C".
Then for any ¢ € C§°(12) we have

(L14.1) o [ Ap(z)loglf(2)] dVan(2)
n
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= f e(2)74(z) dH2p—2(2)

(xsUP(N)NN ,
= [ e@(2)dHaa(2)+ [ @(2)1(2) dHz2n_a(2).
xsNa P(NHNQ

Notice that by definition 1.13.4, v4(2) < 0 for z € P(f). With the
notation above we finally define

(1.15.1) 1£llo = _ sup [ log* |£(¢)ldoc((),
e<¢o 80,

(1.15.2) P(fy== [ 6(z)1s(2)dHzas(2),
P(f)

where log* ¢t = max{logt,0}. Since Z(f) has Hausdorff dimension at most

2n — 4, the integral in 1.15.2 is the same as if we had instead integrated over
all of P(f) UZ(f). Notice also that P(f) is positive.

DEFINITION 1.16. The meromorphic Nevanlinna class associated with
2 C C", denoted by M N(2), is the class of all meromorphic functions f on
1?2 satisfying

(1.16.1) 1 fllo < o0,
(1.16.2) P(f) < oo.

This class of functions has been studied before. (For example see [21].)
Intuitively, 1.16.1 is a condition on “how large” the function f is, while 1.16.2
is a condition on “how many poles” it has. Surprisingly enough though, it
is easy to construct examples (even in C!) that show that neither of these
two conditions implies the other.

2. Estimates for Green’s functions. For the rest of this paper,
unless otherwise stated, we shall assume that the domains we consider are
‘bounded and have boundaries which are C? manifolds, even though this
assumption is sometimes stronger than what is needed. In this section, we
shall briefly review some of the important properties of the Green’s function
for such domains 2 C R" (n > 2), as well as give a theorem estimating its
size, which later will play an important role in proving the main results of
this paper.

PRrOPOSITION 2.1. The fundamental solution for the Laplacian on R™
(n > 2) is given by

_ [ @m)loglz| if n=2,
Lnlz) = { =Bnlz|*~"  if n23,
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where B, = [(n — 2)wy,] L.
This means that for any ¢ € C§°(R")
(2.1.1) | Ap(z)I(z)dV(z) = (0).
R'
It then follows that if u(z) is defined by u(z) = [g. e(y)'(z — y)dV(y),
then u € C*°(R") and
(2.1.2) Au=g.

For details, see [6] (p. 98).
The Green’s function for a domain 2 C R" is a function Gg(z,y) :
2 x N - {(z,z):z € N} — R which satisfies:

(2.2.1) For any fixed z € £2, hz(y) = Ga(z,y) — [n(z — y) is a harmonic

function of y in all of 2 is continuous on 0.
(22.2) Forallze 2 and y € 002, Go(z,y) = 0.

These two conditions are enough to guarantee that, for a given bounded C?
domain §2, the Green’s function always exists and is unique. For details, see
[6] again. Moreover, 2.2.1 and 2.2.2 also imply the well known fact:

PROPOSITION 2.3. Forallz € 2,y € N withz £y
(2.3.1) Ga(z,y) = Ga(y, ).

The Poisson kernel for a domain 2 C R" is the function Pg(z,y) :
2 x 312 — R given by

0
(2.4.1) Pn(:t,y) = a—nyGn(z, Z) =y

where 3/0n, represents differentiation with respect to z in the direction of
the outward unit normal vector to 912 at y.
Any easy application of Green’s theorem gives the useful formula:

__ ProvrosITION 2.5. Let f be a function which is C* in a neighborhood of
2. Then for all z € N2

(251)  f()= [ Galz,9)Af(®)dV()+ [ Pa(z,y)f(y)do(y)
l 8N

where do(y) is surface measure on 912.

For our application though, we do not want this formula to be restricted
to smooth functions. We need:

PROPOSITION 2.6. Let f(z) be a function which is meromorphic in a
neighborhood U of the closure of a domain 2 C C™. Then for any point
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z€(R(f)—xs)N N
(26.1)  log|f(2)l= [ Gal(z.2'y1s(2") dHzn-2(2')

xynN

+ f Gn(za z')7f(z,) dHZn-—2(Z')
P(f)NN

+ [ Pa(z,#)log|f(-)) do(2).
an

Intuitively, this proposition follows from Proposition 2.5 and Corollary
1.14. We must exercise a bit of caution though because Proposition 2.5
does not in general hold for functions, f, which are discontinuous. While
a rigorous proof of Proposition 2.6 requires a good deal of work, the basic
tools which are needed are all part of the standard theory of distributions,
so we will not give the long, drawn out details here. The interested reader
is referred to [26).

As notation for the main theorem of this section we make the following
definitions.

DEFINITION 2.7. Let 2 C R® (n > 2) be a bounded domain. We say
that £2 is concave of order r if for all y € 912 there is a ball B, of radius
r contained in the complement of §2 which is tangent to 342 at y. That is,
B, CR™ -2 and B, N2 = {y}. Similarly we say that £ is convez of order
r if for all y € 812 there is a ball B of radius r contained in £ which is
tangent to 912 at y.

DEFINITION 2.8. The diameter of a domain {2 is given by
diam(2) = sup{|lz - y| : z € 2,y € 12}.
The main theorem of this section is

THEOREM 2.9. Fizr > 0,0 < D < 00 and n > 2. There is a constant
K = K(r,D,n) such that for all 2 C R" with diam(£2) < D which are also

concave of order r,
Ké(z)é
(29.1) (Gaz, )l < T2

forallze 2,ye R,z #y.

Various forms of this theorem seem to be widely quoted, usually without
proof, but the point that distinguishes the statement of it here is that the
dependence of the constant K on the properties of the domain 2 is made
much more explicit. The usual statement is that K exists, but depends on
2 in a completely unspecified manner. For our application hoewever, we
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will need to apply the theorem uniformly to a whole family of domains—the
domains {2, defined in the previous section. For a careful proof of Theorem
2.9, see [26]). There an explicit estimate for the constant K, as a function
of the parameters r, D, and n, is calculated in gory detail. Notice that an
immediate consequence of Theorem 2.9, 2.2.2 and the definition 2.4.1 is

COROLLARY 2.9.2. For all 2 as in Theorem 2.9
(2.9.3) |Pa(z,y)| < Ké(z)/|z - y|"
Jor every z € 2, y € 012.

We can use Theorem 2.9 to compare the Green’s functions of the sub-
domains 2, with the Green’s function of 2. Doing so we get

LEMMA 2.10. Let G, be the Green’s function of 2, (0 < € < &9). (For
the sake of definiteness, set G.(z,y) = 0 if 6(y) < €.) Then for each fired
€

(2.10.1) lintl) Ge(z,y) = Go(z,y) uniformlyinye€ 2.

Proof. Apply the maximum principle to the harmonic function G, —G.
Use Theorem 2.9.

When a sequence of harmonic functions converges uniformly, so do their
gradients. Combining this with the fact that the Green’s function of a C?
domain is a C?~¢ function up to the boundary (see [34]) we get

LEMMA 2.11. Let P, be the Poisson kernel of 2, (0 < € < gp). As in
Section 2, for each y € 012 we let n.(y) be the orthogonal projection of y
onto 052,. Then for each fized z € 2

(2.11.1) lin(l) P.(z,7(y)) = Po(z,y) uniformly in y € 812.

3. The non-tangential maximal function. We now consider the
standard non-tangential maximal function. In the context of harmonic (in
fact subharmonic) functions, this has been introduced before by Stein (see
both [33], Ch. 7 and [34], Ch. 1). In this section we derive an estimate for
the non-tangential maximal function in the context of meromorphic Nevan-
linna functions. This estimate generalizes Stein’s result since it is identical
to his when restricted to the subclass of holomorphic Nevanlinna functions.
Moreover, as we shall see, this estimate implies non-tangential convergence
at almost every point of the boundary for all functions in the meromorphic
Nevanlinna class. At this point the reader is urged to review the defini-
tions and notation presented at the end of Section 1. In particular, one
should remember the definitions of the “non-tangential projection” T, and
the quantities P(f) and ||f||o. We begin by recalling the standard
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DEFINITION 3.1. Let 2 C C" be a bounded C? domain and let f be a
complex-valued function defined on D. For each a > 0, the o non-tangentzal
mazimal function of f is defined for { € 312 by

(Mo f)(¢) = sup{|f(2)| : z € Ta()} -

Of course this definition makes sense for domains in R". We only restrict
our attention to C" since we are interested in meromorphic functions. The
estimate we shall prove is

THEOREM 3.2. Let 2 C C* (n > 1) be a bounded C* domain and fiz
a > 0. There is a constant A = A(a, 2) > 0 such that for all f € MN(R2)
andall A > 0

(3.2.1) a({¢ € 92 : (M, log™ | f|)(¢) > A})

< A[P(f) + X7H(P(f) + I £llo)].
(Recall that o is surface measure on 8f2. Notice also that Mylogt f =
logt M, f.)

Remark 3.3. Notice that in the special case when f is a holomorphic
Nevanlinna function, P(f) = 0, so 3.2.1 reduces to Stein’s inequality.

Remark 3.4. For 0 < € < ¢¢ set 2! = 2 — R2,. (These domains look
like 02 “fattened out”.) For each fixed a > 0 we will want the constant A
to satisfy 3.2.1 not only for £ but also for all £2.. Thus, although we shall
work with one domain {2 throughout the proof of Theorem 3.2, the reader
should notice that each time we pick a constant A;, A,,..., we can pick it in
such a way that it will work just as well if the proof were being done for £2..

For the rest of this section it will be convenient to use the following
notation:

(3.5.1) Fa(C) = (Malog* |f1)(¢) = log" (Maf)()) (¢ €09),
(3.5.2) Sa(A)={(€0R:F,(¢)> A},
(3.53) Vo =T2(P(f))={C €02: () NP(f) # 0},
(3.5.4) Wyu(A) = Sa(A) — Vy
Since S4(A) C Vo U W,(A) it will suffice to estimate o(V,) and o(W,(A))
sepa.rately. This is the strategy of the proof.
PROPOSITION 3.6. 0(V,) < A1 P(f).

Proof. For {( € 012 we write B;({;r) = B({;r) N 812 where B((;r)
is the standard Euclidean ball. That the B,’s satisfy 1.9.1-5 is standard.

Moreover, since 2 is C? there are constants A;, A3 > 0 such that for all
¢ € 012 and all 0 < r < diam(f2)

(3.6.1) A2r®™1 < a(By((5r)) < Aar®™t.
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It is also clear that there are constants Ay, As > 0 such that for all z € £2.
(3.6.2) B1(7(2); A4b(2)) C Tra(2) C By(7(2); As6(2)).

It follows from Theorem 1.11 that there is a sequence of poles {p;}%2, such
that the collection of sets T5,(p;) are pairwise disjoint and such that

(363)  o(Va) < Aso( |J Toalpy))
Jj=1

= As )_ o(Ta(p;)) < A1) 6(p;)*"" .
=1 i=1

On the other hand, there is a small constant Ag such that for each j,
B(pj;2As6(pj)) C Ina(m(pj)). Since the Tp4(pj;) are disjoint, it is easy to
see that the Euclidean balls {B(p;; Asé(p;))}$2, are also disjoint. Setting
B = B(pj; Asb(p;)) we thus conclude

(3.6.4) P(f)y=~- [ &(z)15(2)dHzn_s(z)
P(f)

2-3 [ #2)vs(z)dHanoa(2).

i=1 BinP(f)

Clearly we may assume that we picked Ag < 1/2 so that é(z) > é(p;)/2 for
all z € B?. Thus continuing 3.6.4 gives

(3.6.5) P(H>-) @ [ 11(2)dHzn_s(2)

.

j= B nP(f)
o0
§(v:
> Z (;’J) | f dH2n-2(z)
j=1 B'nP(f)

(since v4(2) < -1 for all z € P(f))

=Y Uy, p(n)n BY).

i=1

Euclidean balls are convex so in each B?, f is the quotient of two holomor-
phic functions. In particular, we may apply Corollary 1.8 to conclude

(3.6.6) P(1) 2 Y M2 agh(p;n = e Y by}
Jj=1

i=1
Taking A; = A7/Ajo finishes the proof.
We now define g. on 812 by g.(¢) = log* | f(7.(¢))]. Since the g. have
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uniformly bounded L! norms (recall f € MN(2)), we can choose a sub-
sequence g.; (¢; — 0) which converges weakly to a finite positive measure
g on 3R2. In fact, we have ||u|| < ||f|lo, where ||x|| is the total variation
of p. (This is the standard procedure for harmonic functions.) For mero-
morphic functions we need to define a second finite positive measure on 942
associated with the function f. For each set E C 012 we let

T Y(E)={z€ 2:0<6(z) < ¢ and 7(2) € E}
and define
v(E)= - 1l 8(z)74(z) dHgn_2(2).
P(f)nx"Y(E)
Clearly ||v|| < P(f). We now have

PROPOSITION 3.7. Suppose f € MN(§2).Then for all ( € 812 -V,
(3.7.1) (Malog* |1)(¢) < Au(M'(u + »))(Q).

(Here M! is taken to be the maximal operator with respect to the “Eu-
clidean” family of balls, B;((; ), on 82 which are defined in the beginning

of the proof of Proposition 3.6. 4 and v are related to f as defined above.
An = An(a, .Q))

Proof. Applying Proposition 2.6 to f2, and using Lemmas 2.10 and
2.11 we have for all z € 2

(3.7.2) log" |f(2)]

< f Ga(z, 2" )ys(2") dHan—2(2") + f Pg(z,2")du(2").
PN an

It is well known that if 2 € I'4({) then the second term on the right is
bounded above by Aj2(Mu)(¢). (See [34], p. 11.) To control the first term,
we argue in a similar fashion, but in this case we must make use of the
assumption that { ¢ V,,. This assumption guarantees that for all z € I',((),
f has no poles in the ball B(z; A;36(2)). For j =0,1,2,... set

(3.7.3) X;=P(f)n{2' € 2:27A4138(2) < |z - 2| < 27+ A136(2)} .

We may then use Theorem 2.9 to write

(3.74) [ Gal(z,2'y14(2) dHzn_o(2")
P(HNN

=Z f Ga(z,2')74(2") dHap_2(2")

Jj=0 X;
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< Z f KAZN\2) 6(2)6(,72,), |7f(z’)| dH2n-2(z’)

J=0 X;

S 2;) xf K2_2nj5(2)-2n+16(2’)|7!(Z,)|dH2n_2(z')
)= j

00
< Y 27iga(-Nig(z) 7 [ dy(().
j=0 =(X;)

But 7(X;) C B1((; A13276(2)) for some large constant A;3 (since z € I (()).
Hence

3.75) [ Galz,2)14(2') dHzna(2) € Y A127H (M V)(C)
P(F)NN j=0

= 2A14(M'v)(C) -

(The careful reader will notice that this argument shows that the first
quantity on the right in 3.7.2 is, as a function of z, bounded abave by a
constant times the Poisson integral of the measure dv.) Now take A;; =
max{Aj2,2A;4} to finish.

We now see why it was important in Theorem 2.9 to keep track of how the
constant K depends on the domain §2. The constant A;; in the statement
of Proposition 3.7 clearly depends on K, which enters in 3.7.4. K will work
for all 2, as well as it does for 2, because all these domains have the same
diameter, and since they will all be concave of order r, for some small 7 > 0
(recall that £2 is C?). Notice that K enters into the proof of the bound on
the Poisson integral term in 3.7.2 as well. (See Corollary 2.9 and [34], p. 11.)

Combining Propositions 3.6 and 3.7 with Theorem 1.12 proves Theorem
3.2. Note that when we are dealing with the domains 2, (¢ < &), we should
be careful, in our definition of the measure v, that we take 7(z) to be the
orthogonal projection of z onto both pieces of 32, = 32 U 312,. This will
mean that 7~1(E) represents the entire “slab” lying over the set E C 812!
stretching from one piece of the boundary to the other. We will have to
define v by v(E) = v(EN9dN) + v(E N 82,). This may mean that we
have to double several of our constants, but this doesn’t hurt. The most
important consequence of Theorem 3.2 (and Remark 3.4) is

THEOREM 3.8. If f € MN(12) then f has a non-tangential limit at
almost every ( € 012.

Proof. We apply Theorem 3.2 to £2.. As ¢ — oo, P(f) — 0 so we
may conclude that f is non-tangentially bounded at almost every ¢ € 942.
(Recall that f is non-tangentially bounded at ( if for every a > 0 there is an
h > 0 such that f is bounded in I'*(¢).) We now follow an argument due to
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Calderédn ([33], p. 201), using the results in Section 2 of this paper, instead
of the explicit formula for the Poisson kernel of the upper half plane which
is used in [33], to conclude that f has a non-tangential limit at almost every
point { where it is non-tangentially bounded. Although in [33] it is assumed
in the statement of the theorem that the function is harmonic in the entire
upper half plane, a close inspection of the proof reveals that one really only
uses the fact that the function is harmonic in every truncated cone I'? in
which it is bounded, and this is certainly the case for meromorphic functions.

4. Generalized approach regions and convergence. In the theory
of harmonic functions, it turns out that non-tangential convergence at the
boundary is actually the best we can hope for, even when dealing with the
very special class of bounded harmonic functions. This is made more precise
by the following definition and example.

DEFINITION 4.1. For each p > 1 the p-th-power approach region with
aperture a at the point y € 912 is given by

(4.1.1) Io(y;p)={z€ 2: |z-y|P < (14 a)é(z)}.

Notice that near 012, I'a(y; p1) C I'a(y;p2) if ;1 < p2 and that I',(y;1) =
Ia(y).

EXAMPLE 4.2. There is a function f € h>(§2) such that for every p > 1,
there is no point on 92 where f has a pth-power approach limit. That is,
forall p> 1, a > 0, and all y € 312, the limit

lim  f(z)
z€la(vip)
does not exist. (See [38], p. 280 for details.)

It is a remarkable fact, then, that for domains 2 C C" (n > 2), holo-
morphic Nevanlinna functions have boundary limits almost everywhere in
approach regions which are considerably larger than the non-tangential ones
associated with harmonic functions. The first of these generalized approach
regions to be considered were the “admissible” regions defined by

_ 1, e . =0 ev| <(1+a)é(z)and
(4.3) Aa(C)-{ erz.'z_w(a&((z) }

(Here v¢ is the unit normal vector to 312 at {, (2—()e¥ represents the com-
plex inner product on C", and 6¢(2) is the smaller of the two distances from
2 to 012 and from z to the tangent plane (to 3f2) at .) Notice that these
approach regions have quadratic profiles in the tangent directions which
are orthogonal under the complex inner product to the unit normal, and
they have non-tangential profiles in the remaining tangent direction. Stein
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introduced these regions in [34], where he shows that holomorphic Nevan-
linna functions have admissible limits at almost every point of the boundary.
Lempert ({21]) has since shown (for meromorphic functions) that one need
not restrict these regions to lying above the tangent plane as Stein does, and
most recently Nagel, Stein and Wainger have generalized these approach re-
gions (for holomorphic functions) considerably further in the case where the
domain 2 is of finite type (see [23]). Their regions will have profiles which
are higher order than quadratic (p > 2) in the complex tangential directions
at points where the Levi form degenerates.

Our aim now is to prove that meromorphic functions have boundary
limits almost everywhere, both in the admissible approach regions (for all
C? domains) and in the larger approach regions in [23] (for domains of fi-
nite type). The reader should keep in mind that we are really proving two
theorems here. One, the admissible version, holds for all C? domains, while
the other only makes sense in domains of finite type. In this subclass of
domains however, the second theorem is stronger than the one about ad-
missible approach, since the approach regions considered in this context are,
in general, larger than the admissible approach regions. We shall treat the
two versions as one though, since their proofs depend only on certain rela-
tionships between the particular approach regions, and associated families
of boundary balls and imbedded polydiscs—relationships which the reader
can check are common to both types of approach. As noted before the in-
troduction, Lempert has proved the admissible version in [21]; but we shall
also derive a quantitative maximal function estimate which he avoided. The
main idea in our proof will be to use the fact that log* | f| is not only sub-
harmonic, but in fact plurisubharmonic when f is a holomorphic function
in several variables. One then makes a second maximal function estimate,
using the already proved non-tangential maximal function estimate. This
second maximal function estimate is made with respect to the associated
family of boundary balls, which are quite skewed in comparison to the Eu-
clidean family considered in Section 3.

The reader is urged to consult [23] for a summary of the important
interplay between the generalized approach regions and boundary balls, but
we shall present here a brief summary of the definitions and results found
there. '

For 2 a smooth domain of finite type, let p be a C* defining function
for £2, and let R(2,w) be a polarization of p, i.e., R(z,w) is a C*, complex-
valued function on C™ x C" such that

(44.1) R(z,2) = p(2),
(44.2) 9.R(z,w) vanishes to infinite order on the diagonal z = w,
(44.3) R(z,w)-— R(w,z) vanishes to infinite order on the diagonal z = w.
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For wg € 092 let X,,...,X2,-2 be real vector fields defined in a small
neighborhood V = V,,, of wg such that L; = X; +iXn4; (1<j<n-1)
form a basis for the complex tangential holomorphic vector fields on 9.
Find also a transverse vector field T such that X,,..., X2,-2,T span the
tangent space to 32 at every point of 32 contained in V.

We now define functions A;,,.. i, on V N 312 by

(4.4.4) [X,',, [X,',_l, . .[X,',,X,'l] .o .]] = /\,‘hm,,‘,T mod(Xl, . .,in_g) .

We let Z; be the ideal in C*®°(V N 012) generated by the A, . ;, with [ <k,
and then define

(4.45) A0 = (X Xy 0)

where the sum is over the generators of Z,. Because {2 is compact and of
finite type, there will be some integer m such that A,,(¢) > 0 for all { € 812.
So for 8 > 0 put

(4.4.6) A°(Q) = Y 0* Ak(() -
k=2

R(z,w) can be used to define a pseudometric and a family of balls on 912.
For z,w in a coordinate neighborhood of 812 (i.e. V N dN2) we say

(4.4.7) d(z,w)< 0 & |z—w| <0 and |R(z,w)| < A%(w).
Use this “distance” to define balls by

(4.4.8) B (2;0)={weVNaN: d(z,w)< 8}.

For z€ 2NV set

(4.4.9) D(z)=_ inf (8(2)/Ax(m(2)))"/*.

(Note that z is not restricted to 812 here. )

The generalized approach region with “aperture” a > 0 at w € 902 is
defined by

(4.4.10) Ao(w)={2€ 2NV :7(z) € By(w;aD(2))}.

We embed polydiscs P, in these approach regions by defining for z € A,(w)
and € > 0 small

v — _|R({,w) — R(z,w)| < €6(2) and
(44.11)  Po(zw)= {C €N: 25— Ci| < eD(e) for 1< 4 < n 1}

where the coordinate system is chosen in such a way that (AR/9¢,.)({,w) # 0
forall( e VN2 (V =V,). When the boundary point w is understood we
shall just write P,(z2). '

The relationships (which we need to use) between these approach regions,
and their associated boundary balls and embedded polydiscs are given by
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PROPOSITION 4.5. For each a > 0, there are positive constants Cy; and
C, so that for z € §2

(4.5.1) By(w(2);C1D(2)) C {w € 32 : z € Ax(w)}

C By(7(2); C2D(2)).
Also, for any pair A > a > 0, there ezxist ¢ = ¢(a,A) > 0 such that
(4.5.2) z € Ax(w) implies P.(2) C Ap(w).

Remark 4.5.3. As a small point of interest, we remark that, for the
purposes of the arguments in the rest of this section, 4.5.2 could actually be
replaced by the weaker condition that, for any a > 0, there ezist A > a and
€ > 0 which satisfy 4.5.2.

At one point in our proof, we would like the pole set of f to be a closed
set. This need not be true if f has indeterminate points. However, P(f)U
Z(f) is always a closed set. (See 1.13.14 and the paragraph that follows
these definitions.) In this section then, when we refer to a pole we really
mean either a pole or an indeterminate point and P(f) will stand for all of
P(f)UZ(f). The reader should notice that this assumption is only made
for the sake of simplicity. Thanks to Theorem 1.1, the quantity P(f) is not
changed by this simplification, and all our estimates will hold without it.

Remark 4.5.4. Notice that Proposition 4.5 is easily translated to the
situation of admissible approach. In this case we can simply use 4.3 in place
of 4.4.10, and replace D(z) by §(z)!/? in 4.4.11, the definition of P.(z). The
definition of the boundary balls corresponding to the B;(2;#) can be found
in [34], p. 33. Thus, since the only non-trivial properties of the approach
regions, balls, and polydiscs that we use in the proofs found in the rest of this
section are the ones stated in 4.5, we will proceed without making explicit
distinctions between the kinds of approach, by just referring to them both
as “generalized” approach.

Following the notation of Nagel, Stein and Wainger we define M,, the
generalized mazrimal function by

(4.6) - (Mah)({) = sup{|h(z)| : z € Aa({)}-

M? will denote the boundary maximal operator with respect to the general-
ized boundary balls B;({;r) (as opposed to the Euclidean versions M! and
B, introduced in the previous section). 7,(z) is the generalized projection

(4.7) To(2) = {C €092 z € Au(()}.

We now fix, for the remainder of this section, an arbitrary a > 0, and fix
also the associated A > a and € > 0 as in 4.5. (If we are willing to take the
stronger condition, 4.5.2, in Proposition 4.5, then we could simplify notation
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by replacing A by 2a everywhere in this section, as was done throughout
Section 3.) For A > 0 we define the analogies of 3.5.1-4:

(4.8.1) Fa(€) = (Malog® |f1)(¢) = log* (Maf)()) (C€0R),
(4.82) Sa(X) = {C€89: Fa(¢) > A},

(4.8.3) Vo =Ta(P(f))={(€02: Arx(Q)NP(f)# 0},
(4.8.4) Wa(A) = Sa(}) = Va.

If'one studies the proof of the generalized maximal function estimate in
the case of holomorphic functions, it is apparent that the fact that f is glob-
ally holomorphic is never used. It is only important that f be holomorphic
in an approach region with a “slightly larger” aperture. One then makes use
of the fact that log| f| is plurisubharmonic by integrating the non-tangential
estimate we proved in Section 3 over the embedded polydiscs, which results
in a maximal function estimate (with respect to the B; balls) of the max-
imal function (with respect to the B; balls) of f. The only catch is that
since M! is not bounded on L', M!f need not be an integrable function,
so we cannot apply a maximal operator to it directly. Instead we apply
M? to the square root of M!f, which is integrable since M! is weak-type
(1,1). (See [3] for a good example of the method used.) Thus if we simply
mimic the standard proof (using Proposition 3.7 in the place of the usual
non-tangential maximal function estimate for holomorphic functions), we
are led to the following:

PROPOSITION 4.9. Suppose f € MN(R2). Then for all { € 02 — V,
(4.9.1) (Malog* |f)(C) < C3[M*((M* (1 + v))*)P(C).

(Here p and v are as in Section 3. Notice that since M!(u+v) is a weak-type
1 function, (M'(x + v))!/? is an L'(8R2) function. In particular, Theorem
1.12(2) guarantees that M?((M'(u+v))'/2) is finite almost everywhere. Of
course C3 = C3(a, 12).)

To prove that boundary convergence takes place in the generalized ap-
proach regions, our plan of attack is to derive an estimate analogous to
Theorem 3.2 and then argue in a manner similar to the proof of Theorem
3.8. The obstacle we have is that we must control the projected area of the
pole set a(V,).

Recall that in the proof of Proposition 3.6 we were very fortunate to have
the projected area of a point z € 2 bounded both above and below by a
constant times 6(2)2"~1. This is because Theorem 1.7 gives us the exponent
2n — 2, and the extra factor of §(z) is provided by the factor of §(2) in the
definition of the quantity P(f). In the generalized case though we have

(4.10) By(7(2); C4D(2)) C Ta(() C Bz(7(2); CsD(2))
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where Cy4 and C5 depend only on a and §2. (The “radius function”, D(z), in
general depends in a rather complicated way on both §(z) and the geometry
of 02 near 7(z), but in the case of the older admissible approach regions
we have D(z) = 6(z)!/2.) The radii of the balls By(7(z);C;D(z)) (in the
Euclidean sense of distance on 32) will be ~ D(z) in the complex tangent
(to 312) directions, and ~ §(z) in the remaining tangent direction. Thus we
have

(4.11) Cs8(2)D(2)*""? < o(Ta(2)) < Cr6(2)D(2)**

where as usual Cg and C7 depend only on a and {2.

This indicates that we will not be able to use Theorem 1.7, as we did in
the proof of Proposition 3.6, to prove a generalized analog of that proposi-
tion, because D(z) is much larger than é(z). That is, lims(;)—o 86(2) "1 D(2)=
oo. The rest of this section will be dedicated to finding a way to tackle this
problem.

The way in which we can embed polydiscs in the approach regions will
be important to us. Recalling 4.5, if ( € 312 and 2 € A,(() then

(4.12) P.(2) = Pi(#:€) C Aa(().

These polydiscs should remind the reader of the balls B(p;;2Agé(p;)) intro-
duced in the proof of Proposition 3.6. So, as a first attempt at a generalized
version of this proposition, we might argue as follows. The collection of
projected areas {75 (p)}pep(s) covers Vo. By 4.10 and Theorem 1.11, we
can find a disjoint subcollection, {7a(p;)}$2,, such that

(4.13) o(Va) < Csa( U TA(PJ')) =Cs »_o(Ta(p;)) -

Jj=1 i=1

It follows from 4.12 that there is an € > 0 such that the polydiscs P.(p;; 7(p;))
are pairwise disjoint. But here is where we get stuck. A direct application
of Theorem 1.7 only tells us that

(4.14) Han-2(P(f) N Pe(pj; 7(p;))) 2 Cob(p;)*"2.

(Embed a ball of radius €’6(p;) in the polydisc P,.) So, if we estimate P( f)
as in the proof of Proposition 3.6 we get

(4.15) P(f) > Cuo Y (32"

i=1

But this is not good enough to bound o(V,) from above, because 4.13 and
4.11 only give the upper bound

(4.16) o(Va) < Cu ) 8(p;)D(p;)*" "2 .

i=1
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It is true that one can iterate Theorem 1.7 to conclude

(4.17) Han-2(P(f) N Pe(pj; 7(p5))) > C126(p;)* D(p;)*"~*
but this only improves 4.15 to

(4.18) P(f)> Cia Y_8(p;)*D(p;)*"~*

i=1

and comparing this with 4.16 one sees that it still is not good enough.
However, 4.17 is really the best we can hope to do for a general pole of f,
as is easily seen by observing the simple example p = (0,0,...,0), P, =
D(0;D,D,...,D,é) and f(z1,...,2,) = 2] 1.

The way out of this bind is to be more careful about how we pick our
sequence of poles {p;}32,. To this end we introduce a concept rather special
for our purposes. '

DEFINITION 4.19. A pole p € P(f) will be called a distant pole of f if
there is no other pole p' € P(f) satisfying Ta(p) C Ta(p') and 6(p’) > é(p).

The term distant is perhaps not the best possible. It is not meant to
imply that the pole p is necessarily far away from 912, only that, in a certain
sense, at p, the pole set of f does not travel very much in a direction which
is orthogonal to 912.

Let Py( f) represent the set of distant poles of f. We claim that the col-
lection {74 (p)}pep.(s) still covers all of V,. To see this, let pg be any pole of
f. We need to show that there is a distant pole p such that T5(po) C Ta(p).
Since the boundary sets 75(z) are open sets (in the boundary topology),
which vary continuously with z € 2, the set, F(pp), consisting of all points
z € 2 with Ta(po) C Ta(2), is closed in 2. Set k = 8§(pg). Then, in partic-
ular, the set P(f)N 2, N F(po) is a closed Euclidean set. (Remember that,
in this section, “the pole set”, P(f), refers to all of P(f) U Z(f).) Being
closed (and bounded, since §2 is bounded), there is a point p that achieves
a maximum distance from Jf2. Clearly such a p is distant.

Remark 4.19.1. The reader is urged to check that, actually, the fact
that {2 is bounded is not absolutely crucial to the previous argument. This
is because P(f) is finite, and this automatically guarantees that no poles of
f are “too far” from 912.

Now that we have the above claim, we can select a disjoint subcollec-
tion of the 7, (p) as p ranges over the set of distant poles, and thus may
assume that all of the poles p; in 4.13 are distant. To take advantage of this
fact though, we need a new theorem, which is in some ways stronger than
Theorem 1.7.
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THEOREM 4.20. Suppose that f is a function holomorphic in a neighbor-
hood of the closure of the polydisc P = D(0;ry,72,...,7,) C C*, and sup-
pose that f has no zeros in the smaller polydisc P! = D(0;ry,72,...,017T0)
(where 0 < 31 < 1); i.e. we assume that

(4.20.1) xsNP =0.
Suppose also that
(4.20.2) £(0,0,...,0,6:7,) =0 (81 < B2 <1).
Then

n-11080; = 2
(4.20.3) Hyn_a(xsNP) > 7 log—ﬂl(FH1 rj) :

For us the important part of 4.20.3 is the factor H;‘;ll r?. The
7"~ 1log B,/ log B term will just be treated as a constant.

Of course it is important to notice that, since polydiscs are convex, we
also have

COROLLARY 4.21. If P, P', ;, and B; are the same as in the statement
of Theorem 4.20, if f is now meromorphic in a neighborhood of the closure
of P, and if we replace 4.20.1 and 4.20.2 respectively by

(4.21.1) P(f)nP' =90,

(4.21.2) (0,0,...,0,5r,) € P(f) (B1<P2<1),

then

(4.21.3) Hap—2(P(f)N P) > w“‘lM(’ﬁ r?)
&l. 2n-2 = logﬂl i il

Before we prove Theorem 4.20 let’s see what it does for us.

First we make a simplifying assumption about the distance of the pole
set of f from 3f2. Recall the definition of ¢¢ from Section 1 (loosely, this is
the thickness of a “smooth tube” around 812), and set E = £¢/3. We claim
that it is fair to assume that

(4.22) P(f)N s =0.

To see this, we reason as follows. Theorem 1.7 allows us to conclude that
there is a small constant 7 > 0 such that for any f which is meromorphic
on {2 and has a pole in 2g, P(f) > 7. But we can make the conclusion of
our main estimate (Theorem 4.29) trivial for all f with P(f) > 7, simply
by picking our constant, C = C(a, £2), so large that C, > o(312).

Now recall from 4.12 that

(4.23) P.(z157(21)) N Pe(22;7(22)) =0 whenever Ta(z)NTa(z2)=0.
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For each z € 2 (near 32) we define the new point t(2) € 2 by
(4.24) m(t(z)) = n(z) and 6(8(2)) = (1+¢/2)é(2).
Now because each p; is a distant pole of f, it follows from 4.10, the ball

condition, 1.9.4, and 4.22, that we can find an ¢’ with 0 < ¢’ < ¢/4 such
that

(4.25) Pe(U(p;)iv(p)) N P(S)=0 Vj.
(Notice that this is easily verified directly for the admissible approach regions
defined in 4.3.)

Choose coordinates so that #(p;) = (0,...,0) and v,y = (0,...,0,1),
and set D = D(p;) and 6 = é(p;). We can now apply Corollary 4.21 to
the polydisc, P; = D(0;¢'D,...,e'D,eé), with P} = D(0;¢'D,...,&'D,¢€'s).
The conclusion is that

(4.26) Hzn_z(P(f) N PJ') > CI4D(pj)2"—2 .

But clearly P; C P.(t(p;); ®(p;)), and the latter are pairwise disjoint, so we
get the improvement of 4.18 that we need, namely

(4.27) P(f)>Cis 25(1’1')17(131')2"-2 -

i=1
Combining this with 4.16 gives us the following analog of Proposition 3.6,
which is just what we were after.

ProPoOSITION 4.28. 0(V,) < C16P(f).
Combining this with Proposition 4.9 we get

THEOREM 4.29. Let 2 C C" (n > 1) be a bounded C* domain and fiz
a > 0. There is a constant C = C(a, 2) > 0 such that for all f € MN(12)
andall A >0

(4.29.1) o({¢ € 82 : Malogt |f])(C) > A})
< CIP(f)+ A7Y2(P(f) + 1 F1l0)' 2.

Theorem 4.29 works nicely as a uniform estimate when we allow f to
vary, while keeping {2 and a fized; but, in spite of the fact that it looks very
similar to Theorem 3.2 (which we used to prove the non-tangential limit
theorem, 3.8), we cannot use it in the same way to prove a generalized limit
theorem. This is because, in order to satisfy 4.22 (which was used in the
proof of 4.29), we had to construct the constant C in 4.29 in such a way
that it depends very strongly on the “thinness” of the domain £2. Thus, we
cannot apply 4.29 uniformly to the domains {2, as ¢ — 0, which is what we
need to do to get a generalized analog of Theorem 3.8. We need a theorem
similar to 4.29, but one which works better in the context where we fix f
and “vary the domain £2”. That is, in order to get an estimate with a single
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constant, which works for all the 2], we will use the fact that f is defined
in the interior of 2, well outside of f2.. For that purpose, we state the
following

THEOREM 4.30. Suppose that 2 C C" and A > a > 0 are all as before.
For 0 < € < €9, we set D(¢) = sup{D(z): z € £2.}, and let d > 0 be any
real number so small that 2D(d) + 2d < €¢. As shorthand, write D = D(d).
If f is any function in M N(£2), we define

(4.30.1) Zof)=P(H)N(2 - 0a),

(4.30.2) Ta(f) = P(f)N (2 — $2D424)

(4.30.3) Pi(f)=- [ &=)14(2)dHan-s(2).
Ta(f)

Then there is a constant K = K(£2,a,A) > 0, independent of d and f, such
that

(4.30.4) o(Ta(Za(f))) < KPa(f).

Proof. For z € 2 — {2,,, we define a family of polydiscs in §2, and
associated “balls” on 942 parameterized by b = (b,,2)(0 < b; < 1/2,0< b;)
as follows: For z € 2 — £24,i.e. §(2) < d,

|za = Cnl < b16(2) and }

(4.30.5)  Py(2) = {C € Gl <bD(z)for 1<j<n—1

For z € 24,i.e. §(z) > d,

|zn — (a| < 016(2) and
(430.6)  Pl2) = CED: |z (| < ba[D(ra(2)) + 6(2) - d]
for1<j<n-1

(where coordinates are chosen as in 4.4.11),
(4.30.7) By(2) = n(Py(2)).

(Recall that m4(z) is the orthogonal projection of z onto 32;.) In a way,
these balls “interpolate” between the generalized balls (when z is near §2)
and the ordinary Euclidean balls (when z is far from 92).

For an appropriate choice of b = (b, b;) (depending on £2), we have

(4.30.8) P(z)CR Vze.

So fix this b for the rest of the proof.

Moreover, having fixed b, it follows from the definitions 4.4.8 and 4.4.9
of the generalized boundary balls B, and the function D that there are
constants K;, Kz > 0 (depending on 2, but not on d) such that

(4.30.9) . By(7(2); K1D(2)) C Bi(2) C Ba((2); K2D(2))
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whenever z € 2 — £24. In particular, it follows from Proposition 4.5 that
there are constants K3, K4 > 0 such that

(4.30.10) K30(7Ta(2)) < 0(By(2)) < K4o(Ta(2)) Vze 2- .Q,; .

Let S4(f) C 892 be the union of the collection of balls {By(2) : z €
T4(f)}. We claim that to prove 4.30.4, it is enough to show that there is a
constants K’ = K'(£2,a,A) > 0, independent of d and f, such that

(4.30.11) a(Sa(f)) < K'Pa(f).

The justification of this claim follows from the ball properties 1.9.1-5.
Notice that from 4.30.9 we have

(4.30.12) Sa(f)> |J Ban(2);K1D(2))
z€X4(f)
and from 4.5.1 we have
(4.30.13) U Br(2)iC:D(2))> | Ta(2)
z€X4(f) z€Zq(f)

and neither of the constants K; nor C; depends on d.
Thus, if K; > C,, our claim is proved. If not we simply use 1.9 to write

(4.30.14) a( U B2(7F(Z);02D(2)))
z€Z4(f)

<K") " o(By(n(2z:); C2D(2)))
tool
<K" Za(Bg(n'(z,-_); K,D(2))) < K"a( U By (n(2); KlD(z))) .
i=1 2€Z4(f)
So we now focus on proving 4.30.11.

As before, we pick a disjoint subcollection, {B4(2;)}$2,, but this time
we do it carefully. We select z; so that By(z;) is disjoint from all the By(2;),
with ¢ < j, and §(z;) is as large as possible.

Define £(z) by
(4.30.15) T(€(2))=7(z) and 8(&(2)) = (14 b1/2)é(2).
We call z essentially distant (resisting the temptation to call it nearly dis-
tant) if either 6(2) > d + D, or §(z) < d + D and the polydisc P,(£(z))
satisfies condition 4.21.1 , with 8; = b;/8. (Notice that P,(£(z)) always
satisfies condition 4.21.2 for some b;/3 < (8, < b;/2, because z itself is a
pole of f.)

The polydiscs Py have the ball property, that there is some large constant

Ks > 2, independent of d, such that whenever Py(z) N Py(2) # © and
6(2) > 6(20) then Py(29) C Py (2). Itis also not difficult to verify that there
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is a constant Kg, independent of d, such that whenever é(z) > (1+b,/4)6(20)
and Px.s(z) N Pk.b(20) # O then

(4.30.16) Pxob(20) C Pies(2) -

From this, 1.9.1-5, and the way that we selected the disjoint subcollection,
{Bs(2j)}32,, it follows that for each z; in our subcollection, either z; is
essentially distant, or there is a z; which is essentially distant, and also has
the property that

(4.30.17) Pyen(z5) C Pxen(2i) -

To see this, notice that if z; is not essentially distant, then there is a pole
p; with 6(p;) > (1 4+ b1/4)6(z;) and p; € Pap(2;). From the way that the
subcollection was selected, there must be a z; such that §(z;) > é(p;) and
Py(pj) N Py(2;) # 0. As above, we must have Py(p;) C Pk,s(2:), so that
(4.30.18) Pi € Pap(25) N Pxp(2i) C Pxoo(25) N Piyo(2i) -

Hence 4.30.17 follows from 4.30.16.
Thus, if ED = {z;,,2;,,...} is the collection of z; which are essentially
distant, then

(o o]

(4.30.19) > o(Bu(z)) <Kz ) o(By(z)).

j=1 2;€ED

But we can split the sum on the right in 4.30.19 into the sum over those
z; with 6(z;) < d + D and the sum over those z; with §(z;) > d + D.
When 6(2;) < d + D, Corollary 4.21 applies. So if we set A(z) = D(z) for
z € £) — £24, and A(z) = D(7q(2)) + 6(z) — d for z € £24, then

(4.30.20) o (Bu(z;)) < Keb(2;)A(2;)*"?

< -Ky f 6(2)77(2z) dHzn—2(2).
Py(2;)NP(f)
And when 6(z;) > d + D, the balls. By(2;) have “almost Euclidean” di-
mensions, so we can apply Corollary 1.8 to an imbedded Euclidean ball,
obtaining

(4.30.21) o(Bs(z;)) < K106(2;)*"?

<-Kn [ 82)1(2) dHzns(2).
Py(z;)0P(f)

Combining 4.30.19-21, and summing as usual, gives 4.30.11, which finishes
the proof of Theorem 4.30. m

It is now apparent how to use Theorem 4.30 to prove generalized conver-
gence of f at almost every point of 2. We do not have a uniform bound on
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Ta(P(f)N$2L) purely in terms of P(f) (P(f) here means with respect to the
thin domain §2]), but we do know that D(d) — 0 as d — 0. Thus, the fact
that P(f) is finite tells us that Py(f) also goes to 0 as d goes to 0. Thus,
Theorem 4.30 finally allows us to conclude that the set of points { € 32
which are generalized accumulation points of P(f) is of measure zero. Com-
bining this with Proposition 4.9, and mimicking the proof of Theorem 3.8,
we are led to

THEOREM 4.31. If f € M N(12) then f has a limit at almost every { € 012
in the generalized approach region at (.

The only loose end left to tie up is

4.32. Proof of Theorem 4.20. In order to make the proof at all
legible we shall need to set up some notation. (This is only a small mod-
ification of standard notation from the theory of functions of one complex
variable.) Thus we shall write for z€ C*, we C,r>0,j=1,...,n:

(4.32.1) fi(w; 2) = f(21,...,2j-1, W, Zj41,+ . 5 2n),

(4.32.2) Dj(r;z)={2€C":|3| <r, 2 = 2, if k # j},

(4.32.3) Pj(r1,...,mn) ={2€C":%; =0, |Z| < rr if k # 7},

(4.324)  dVj,_, = (5/2)" Nd=ndz ... dFj_1dzjy . . .d2,d3Z,

= dzydy; ...dyj_1dzj4q .. .dzpdy,,

(4.32.5) n’f'(r;z) = number of zeros (including multiplicity) of the one
variable function, f(z1,...,2j-1,®,Zj41,...,2n) =
fj(w;z), in the (one-dimensional) complex disc
Dj(r; 2),

. n.’}(s; z)— n’f'(O; z) ds.

(4.32.6) N}(r; z) = f .
0

Jensen’s formula in one variable says that if n’j'(O; z) = 0.then

2
. 1 :
(4.32.7) Nj(r;z) = 5 f [log |f;(re'; z)| — log | f;(0; 2)|] d6.
0
Theorem 1.2 and Lemma 1.4 combine to give us

(4.328) Hap_2(xyNP)= Z f n’j'(rj; 2)dVi. _,(2)

J=1 Pj(r1,...,Ta)

> [ a¥(ra2)dVy(2).

Po(r1,ee0i7n)
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The key point is that assumption 4.20.1 guarantees that for all z =
(21, .. .,Zn_l,O) € Pn(rl,. . .,'I‘n)

nre o 15(s2) T nG(rn;2)
(4.32.9) Nj(rp;2)= ﬁf Tds < af —— ds
1Tn 1Tn

™ ds
=nj(raiz) [ — =(-logB)n}(r;2).
ﬂlrn
Combining 4.32.8 and 4.32.9 and invoking 4.32.7 we have

(4.32.10) Hj,—o (Xf N P)

>(-logh)? [ N(raiz)dVi,o,
Pn(rlv---srl)

1 27 '
= (-logp)™ o= | [log|fa(rne®; 2)| — log|fx(0; 2)|] A8 dV;,
Pa( T) 2m 0
8n(T1y.:0yTn

-1 27 .
_ (zlogf)™" logﬂl) f dd [ [log|fa(rne’; 2)| - log| fa(0; 2)[] AV,

Pr(r1,...47s)
(The last equality comes, of course, from Fubini’s theorem.)
Assumption 4.20.1 tells us something else, namely that for each fixed
8 € [0, 27] the function f,(rne'®; z)/f(0; 2) is a holomorphic function of the
n—1 variables 2, ..., 2,_1 in the (n—1)-dimensional polydisc P,(r1,...,75).
Thus the function
log | fa(rae'; 2)/ fa(0; 2)| = log| fa(rae™®; 2)| — log | £u(0; 2)|

is plurisubharmonicin P,(ry,...,r,). It thus follows from the last inequality
that

(4.32.11) Han_z(xs N P)

~(logB)™ (7 ..z i8
> =2 [ (1 #73)Uog | fu(rac’®; 0] - log | £(0)]) 8

0 i=1
n-1 ,n-1

7r n .
=~ (,_1:11 1) N7 (rai0).

But assumption 4.20.2 says that n’f‘(s;O) > 1 for all s > B,7r,, hence

" ds
(4.32.12) Ni(ri0) 2 [ = =-logh,.
Bara

This finishes the proof.
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