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In the study of the extension problem in the categories of normed
linear spaces and bounded linear operators and of metric spaces and
Lipschitz maps, two types of spaces, i.e., a P’-space and an L*-space,
were introduced and studied by Nachbin [11], Goodner [6], Kelley [9],
Pelezytiski [12], Sobezyk [14], Aronszajn and Panitchpakdi [1], Cipszer
and Geher [4], Grunbaum [7], [8].

Definition 1. Let A€[1, co). A normed space Y is said to be a P*-space
if, whenever X is a normed space and A is a closed subspace of X, bounded
linear operator f: A — Y can be extended to a bounded linear operator
F: X - Y such that |F|| < 4|if]l.

Definition 2. Let Ae[1, o). A metric space Y is called an L*-space
if, whenever A and X are metric spaces such that 4 is a closed subset
of X and f: A - Y is a Lipschitz map, there exists a Lipschitz map
F: XY such that F|A = f and ||[F||<A||f|. Here ||| denotes the Lipschitz
norm, i.e.,

lgll = inf{K: dp{g(z), 9(y)) < Kdg(z,y) for all z,y e X}.

for any Lipschitz map g: (X, dx) > (Y, dy).

In this note we prove that every P*-space is an L*-space. At the same
time we show that the Banach space ¢, is an L*-space for A = 74, but it
is not a P*-space for any 1 > 1.

Our main result is the following

THEOREM 1. Let Y be a normed P*-space. Then (Y, ||) is an L*-space.

Proof. Let f: A > Y be a Lipschitz map from a closed subset A
of a metric space (X, d). Without loss of generality we may assume that
ifll =1. We consider ¥ as a normed linear subspace of a space m (D)
of all bounded functions on a set D (with the supremum norm).

Since m (D) € L' (see [1], [3] or [4]), there exists a Lipschitz map
g: X - m(D) such that

glA =f and |g(@)—g@l<d(z,y) for all z,y e X.
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Let L(X) and L(A) denote the linear spaces with the linear bases
X and A, respectively. Then L(A) is the linear subspace of L(X) spanned

by A.
Given
t = j‘z,.m,.eL(X),
put -
3(t) = max {| ;‘ hg(@)], sup| 2 o)},
where

D ={pel(X):p|A =0 and |p(2)—¢(y)| < d(x, y) for all z,y € X}.

Finally,let E = L(X)/s"'(0)and F = L(4)/s"*(0), E being considered
in the quotient norm § induced by s. Then
(a) The linear operator h: F — Y defined by

M[ 2 nad) = X Ad@
{=1 =1
satisfies ||k (2)|| < &(2) for every z € F.

(b) F is closed in F.
In fact, if z € E\F, then

£ = [ Jal,

where z,, 2,, ..., 2, € X are mutually distinet, 4,, 4,, ..., 4, are different
from zero and, say, x, ¢ A. For every y € F,

k
Yy = [Zma,-], where a,, agy...,a, € A.

i=1

We then get

n k n k
iz—y) =35(> Ao~ Y ma) = | Y hol@) — 3 moa)),
f=1 f=] fm] f=1

where ¢(z) = d(z, AU {5, X3y ..., 2,}) € D.
Hence
8(z—y) > |AMld(zy, AV {Zy, 73, ..., 2,}) > 0,

which shows that z ¢ F and completes the proof of (b).
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Since Y is a P*-space, we infer from (a) and (b) that there exists
a bounded linear operator H: EF — Y such that H|A = h and

|H(2)|| < 28(2) for every ze E.

For every € X put F (z) = H([x]). We then get for z,y ¢ X
I (2) —F ()| = IH([=) —H([yD)] < As(z—y)
= Amax{lig(z)—g(y)ll, 8Up |¢(2)—¢(y)1}.
[ 53

Since |lg(z)—g¥)I < d(x,y) and |p(x)—o(y) < d(v,y) for every
¢ € @, we infer that

I1F (@) —F (y)| < Ad(w, ).

Thus the theorem is proved.

From the results of Nachbin [11] and Aronszajn and Panitchpakdi [1]
we infer that a Banach space Y is a P'-space if and only if Y is an
L'-space. The situation, however, is different in the case where 1> 1.
We shall see that ¢, € L™ but it is not a P*-space for any 1> 1.

LeMMA 1. If a Banach space Y € L, then Y** € P,

Proof. Let Z be a Banach space containing Y** as a closed subspace.
Since Y e L*, there exists a bounded linear projection p** from Z** onto
Y** of norm less than, or equal to A (see [10]). Putting p = p**|Z we
get a bounded linear projection from Z onto ¥** with norm less than or
equal to A.

A Banach space Y is called conjugate if ¥ = X* for some Banach
space X. It is known (see [5]) that if Y is a conjugate Banach space, then
there exists a bounded linear projection p from Y** onto Y of norm 1.
Combining this with Theorem 1 and Lemma 1 we get

PROPOSITION 1. A conjugate Banach space Y is a P*-space if and
only if Y is an L*-space.

We now show that there exist normed spaces which are in L*\P%,
We need the following definition:

Definition 3. A normed space Y (respectively, a metric space Y)
is called a P*(s)-space (respectively, an IL*(s)-space) if it satisfies the re-
quirements of Definition 1 (respectively, of Definition 2) for every separable
normed space X (respectively, for every separable metric space X).

The same argument as in the proof of Theorem 1 shows the following

PROPOSITION 2. If a normed space Y i8 a P*(s)-space, then (X, |-|)
i8¢ an L*(s)-space.

Now let us prove the following

PROPOSITION 3. Let Y be a separable L*(s)-space. Then Y is an L¥*-space.
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Proof. Let X be an arbitrary metric space and let f: A—Y be a Lip-
schitz map from a closed subset A of X into ¥. Without loss of generality
we may assume that ||f| = 1. By a theorem of Banach and Mazur [2] we
may assume that Y is a subset of the space E = (. A theorem of
Lindenstrauss [10] shows that there is a Lipschitz map ¢g: X — F such
that g| A = f and |lg|| < 37||f]| = 37.

Let F = E x R' with the max-norm and write

h(z) = (9(2), d(=, 4)).

Finally, put Z = h(X)UY x {0} < F. Identifying Y with Y x {0}
we easily see that Y is closed in Z. Moreover, since Z is separable, there
exists a Lipschitz retraction R: Z — Y of norm A. Then F = R-h is
an extension of f and

ILF""(w) —F(y)ll < Amax {lg(z) —g(y)l, 1d(z, 4)—d(y, 4)|} < 37d(w, y)

for all ¢, y € X. This completes the proof.

Remark. The corresponding statement for P*-spaces and P*(s)-
spaces does not hold. Indeed, if m denotes the Banach space of all bounded
scalar-valued sequences with the supremum norm and ¢, is its closed linear
subspace of all sequences convergent to zero, then, by Sobezyk [13],

(1) ¢, is a P?(s)-space;

(2) there is no bounded linear projection from m onto ¢,.

Combining Sobezyk’s results with Propositions 2 and 3 we get

PROPOSITION 4. ¢, i8 an L™-3pace; however, it is not a P*-space for any
Az 1.

Remark. Lemma 1 and Proposition 4 show that c}* is a P*-space
for some 1> 1; however, ¢, is not a P*-space for any 4> 1. On the other
hand, it is well known (see also Theorem 1 and Lemma 1) that if a Banach
space Y is a P*-space, then so is ¥™**.
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