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SOME PROBLEMS AND REMARKS ON RELATIVE MULTIPLIERS

BY

S. HARTMAN (WROCLAW)

0. Let G be a compact abelian group and I its dual. There is a fairly
developed theory of multipliers on various function and measure spaces on
G. Under a multiplier on the space X on G we understand in this paper a
function ¢ on I such that ¢x is the Fourier transform of a member of X
provided that xe X. (We suppose every time that any member xe X has a
well-defined Fourier transform x.) In a few classical cases the space .4 (X) of
multipliers on X is equal to M(I) — the space of Fourier-Stieltjes trans-
forms of finite Borel measures on G. Thus .#(X) = M(I if X = L'(G) or
C(G) or L*(G) or M(G). For I* (1 < p < oo) the multiplier theory is much
more complicated but much is known (see [1], Chapter 16, [2], and [7], for
example). We are concentrated on relative multipliers. By those we mean
multipliers on subspaces obtained from X by restricting the carrier of the
Fourier transform (the spectrum) of its elements. Thus L} means integrable
functions with spectrum in E c I', and L%, Cg, Mg have analogous meaning.
To this kind of problems less attention was paid. Interesting results of Meyer
[8] about .#(LL) concern mainly the case I' not discrete.

1. The aim of this paper is to state some simple relations between
multiplier spaces and to raise some problems. In the sequel we admit the
usual notation B(E) for the quotient space of Fourier-Stieltjes transforms
restricted to E. We begin with

THeoOREM 1. The space - # (Mg) equipped with the multiplier norm is the
closure of the linear space of functions on E with finite support under
pointwise and norm bounded convergence.

Proof. Let (h,) be a net of members of .#(Mg) pointwise convergent to
some h and let ue Mg. If ||h,|| < K, then for every a there is a v,e Mg such
that gh, = v, and ||v,J| < K||ul|. Hence (v,) converges * weak to a measure
whose transform is hj. Thus he .#(Mg). Conversely, let he .#(M;). Suppose
that k, is an approximative unit in L' (G) such that k,’s have finite supports.
Then hk,|E — h pointwise and, for every ue Mg, jik, is the Fourier transform
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of a measure of norm < ||y|. Thus hk,|E - ji = h-k_ i is the Fourier transform
of a measure of norm < ||y||-||lh||. Hence the operator norms |hk, E|| are

bounded (by ||Al]).
THEOREM 2. Let E be any subset of the discrete abelian group I' and

Jg=1{fel®: fIE=0).
Then

(1) M (Lg) = M(L*/Jg) = M(C/Jg N C) = M (M) > B(E).

The operator norms in all multiplier spaces occurring in (1) are equal.
We prove the theorem by steps.
1° M (Lg) = M(L*/Jg). Let he M (L%), ||h|| the norm of h as operator

on L, feL}, geL® and let [g] be the equivalence class of g(mod J)
equipped with quotient norm. We have

(fh,GIEY = <f, hGIEY and  |{(fh, GIED| < |IHl-IIfll; - ICgdll-
Hence hj determines a linear functional on Li with norm < ||| - ||[¢]||. Since
L*/Jg = L}, it follows that hj|E = k|E for some ke L*, so he .#(L*/Jg) and
the operator norm of h in .#(L*/Jg) does not exceed | h||.

2 MC[JgnC)c #(Mg). This is proved like step 1° because
Mg = (C/Jg n CO)*.

3 M(L*)/Jg) = M(Mg). Let he #(L*/Jg) with norm ||h||, ¢ > 0, and
fe€C(G). Then there exists a ge L* such that §|E = hf |E and

(2 gl —& < 1[gMcyy, < NANES Moy, < HAIIES Mersgnc-

Let again (k,) be an approxlmatlve unit in L!'(G). Then g *xk,e C(G), and
since hk, f|E = k, §|E, we have hk E(C/IgNC). As ||g*k )l <9, BY (2)
we obtain

Ilg *kadlicirgnc < gl < L9 < s +& < AL lepgnc +e-

This proves that the norms of hk, in .# (C/Jg N C) are bounded: ||hk,|| < ||A|l.
By step 2° we may write hk,e .# (Mg) without increasing the norm. Hence
taking into account that k, — 1 pointwise we infer from Theorem 1 that
he M (Mg).

(") #M(Mg) c #(C/JgnC). Let he #(My) with norm ||k and
feC(G). We denote by PT; the linear space of trigonometric polynomials in
Cg. Members of PT; may be viewed as elements of C/Jz N C. If ue M, there
exists a measure ve My such that hji = v. Since Mg = (C/Jg N C)*, for any
we PT; we have

[<hwo, @3] = 1<w, 9| < 1Al - [l - IWllpag nc-

(') The author is indebted to M. Bozejko for this step.
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Let v be the polynomial having hw as its Fourier transform. Then

3) ollcisgnc = sup 1<, )l < ||All - IWlic/sgnc-
llEME
ull=1

Let (w,) be a sequence in PTg such that ||w,—[fllc/sz~c — 0. Such sequences
exist because PTg is dense in C/Jg N C, since PTis dense in C(G). If v, is the
polynomial having hw,-as its Fourier transform, then, by (3),

10— Vmllcisgnc < 1Al [Wn— Wallcysp -
Hence the sequence (v,) is norm convergent to some [¢@]e C/Jg N C such that
®|E = hf |E; thus he .#(C/Jg n C) and by (3) the operator norm of h in this
space does not exceed ||h|.
5° M(Mg) = M(LL). Let he(Mg) with operator norm ||h|| and felLl.
There exists a sequence (w,) of trigonometric polynomials with spectrum in E

norm convergent to f. Let v, denote the polynomial whose Fourier transform
is hw,. We have

loall e < N4l llwally < [1AIALS 1L +€)

for n large, whence (v,) is also convergent in L' (via Cauchy condition) to
ge LL, say. Of course, §|E = hf |E. Thus he .#(L.) and the operator norm of
h in this space is < ||h||.

6° If in (1) we set E = I, the classical result .#(L') = .#(L®) = #(C)
= # (M) = B(I') appears. The last equality follows trivially from the fact
that B(I') ~ M(G) has a unit element (the function I =J,). From .#(M)
= B(I') it is now obvious that .# (M) o B(E). This completes the proof of
Theorem 2.

The following chain of equalities, analogous to (1), is well known:
(4) M(L/IgnL') = M(LF) = #(Cg) = M (M/I) = B(E),
where I denotes the ideal in M (G) consisting of measures in M (G) such that
fi=0 on E. The last equality in (4) holds because M/I; ~ B(E) has a unit
element. B(E) = .# (L'/I; n ') follows from the fact that u* fe L' for any
feL' and any p. Further, we obtain .#(L!/I; n L) = .# (L) like step 1° in
the proof of Theorem 2, since Ly = (L'/Ig n L,)*. In the same way we infer
that .#(Cg) = .#(M/Ig). Finally, we obtain .#(Lf) c .#(Cg) by setting f
= limunifw, for any feCg, where w,e PT;. All these inclusions do not
increase the norm.

Thus the multipliers for spaces occurring in (4) are known as far as the
knowledge of B(E) reaches. Yet the multipliers in (1) are to a great deal a
mystery. We intend to shed some light thereupon.

2. Let us begin with the nearly obvious remark that, for any he .#(L}),

(5) Al < llAlls)
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If he B(E), we call h a tame multiplier for LL. Otherwise, it will be called a
wild multiplier. To obtain examples of wild multipliers we may set G = T and
E=Z". Then L. = H'. Let the infinite set S be a finite union of Hadamard
sequences in Z*. Then by the Paley inequality we have, for any fe H',

Y I n)* < Al

neS
Thus the function Ig defined in Z* is a multiplier of H'. To see that
15¢ B(Z™) the shortest argument is to base on the result of Host and Parreau
[5] which reads as follows:

The set K < I' is said to be of M, type if
lim a(x) =0

holds for every measure in M. If K is of M, type. then every 0-1 function in
B(I'\K) is the restriction of an idempotent of B(I).

This combined with Cohen’s idempotent theorem and the F. and M.
Riesz theorem stating that every measure in M, is in L'(T) (in other words,
Z~ is a “Riesz set”) yields the desired result.

A larger class of wild multipliers on H'! can be obtained by means of
recent interesting results of Peller [11].

Instead of Z* we may set E=Z*\F, where F = Z* is closed in Z in
Bohr topology. We then take for S a subset of E having the same property
as above. According to a theorem of Meyer [9], FuU Z™ is a Riesz set and
we can repeat the above argument, thus coming to the result that the
function Ig defined in E is a wild multiplier in L}. As an example of a set in
Z* closed in Bohr topology we can take any Hadamard sequence but also
larger sets like that of primes in the progression 8k + 3.

We may also assume that F =« Z* is such that Z~ U F is a Rajchman
set, i.e., such that if img =0 on Z\(Z~ UF), then lima =0 on Z. Logical-
ly, this is a stronger condition than to be an M|, set. It is not known whether
it is essentially stronger but it can be characterized in arithmetic terms as
follows [6]:

A < Z is a Rajchman set if and only if there does not exist any infinite
set ® — Z such that

A> fa+) +v: 1 finite, y,€ O, y; different].
el
If we want to have an example of a wild multiplier in L. for a set E
such that [ENZ*|=|ENnZ | = w, we may set
E=2Z"u(Z \2Z") and h=1I,

where I is the characteristic function defined on E of an Hadamard set
S c2Z*. Then h is a multiplier in L} by the Paley inequality on account of
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the fact that the sets 2Z and Z\2Z are harmonically separated (this means
there exists a u with |2Z =1 and f|(Z\2Z) =0). Owing to the same
separation argument the set Z\E is a Riesz set. Now, the wildness of h
follows from the theorem of Host and Parreau and that of Cohen.

Let E be an element of the “coset ring” of an ordered discrete abelian
group I'. (The coset ring is the complementative ring generated by all
subgroups of I' and their cosets.) Then I.e B(I') = .#(M[) so that B(E)
= .# (Mg). On the other hand, this equality holds trivially for Sidon sets
because then B(E) = [®(E). Thus in both cases (i.e., for the “big” infinite sets
in the coset ring and for the “small” Sidon sets) M has no wild multipliers.
Now the problem arises whether there exist other sets having this property.

It is obvious that in all cases just considered we would obtain again a
wild multiplier in My if we take for h any bounded function tending to 0 at
infinity on E\S and not tending to O at infinity on S. This remark suggests
the following question: Suppose that M has wild multipliers. Must it then
have wild idempotent multipliers? (P 1332)

3. Let us call a set EcZ an L'C set if the Fourier series of any
function in L} is norm convergent in L'. By the Banach-Steinhaus theorem
this is equivalent to the uniform norm-boundedness of all operators
f—Syf (feL)), where Sy f denotes the N-th partial Fourier sum. A set
E c Z is called a UC ser [10] if the Fourier series of any function in Cg is
norm convergent in C(G). Again, by the Banach-Steinhaus theorem this is
equivalent to the uniform norm-boundedness of all operators f—Sy f
(f e Cg). From (1), (4) and (5) we infer that UC = L' C. The converse is false
as proved by Fournier [3]. Owing to (1) we can characterize L' C sets in
terms of continuous functions. In fact, E is L' C if and only if for any fe Cg
the series ) f(n)e™ is convergent in the quotient norm || ||, sg~c- The last

means that for every ¢ > 0 there exist N and a continuous function g such
that suppg < Z\[-N, N], llgllo <€ and § = f on E\[—N, NJ. Let us add
that an L' C set is an M|, set. In fact, by (1) the finite sum operators f+— Sy f
are norm bounded also if considered as 0-1 multipliers on M. This means
that for every ue Mg its Fourier series has bounded partial sums, whence i
— 0 owing to [4].

Going a step further we meet subsets of a discrete abelian group I' such
that for a suitable constant C and any finite set F — E (whose characteristic
function on E will be denoted by 1) the projection Sy of LL onto L. defined
by

Sef(") =Z’Ff()’) <, >

is norm bounded by C. That is to say that E is a A, set; in other words, that
Lt < I% or ||fll, < const||f]l, for feLk. This equivalence is known but let.
us sketch its proof for completeness. We have to do this only in one
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direction. We may suppose E is countable. Let us fix a well-ordering (y,) of E
and let r, denote the n-th Rademacher function. Let us observe that the
condition ||Sg|| < C for all finite sets F — E implies unconditional conver-
gence of the Fourier series of any f e L} and is actually equivalent to it by the
Banach-Steinhaus theorem.

We infer from the condition ||Sg f||; < C||f||; for all finite sets F < E
and any felLl that for every te[0,1] and NeZ*

N
12 ra(6) £ (vn) <pm» xD|dx < 2C|1f))4,
G 1

whence

1 N
([ IZI:r(t)f(v..) (s xD|dxdt < 2C| |1y
and, using Khintchine’s inequality,
211l > fdx f IZr () () <y Xt > K(z FLCAT A

where K is the Khintchine constant. Thus fe I2.
There are also other ways to characterize A, sets. Let us prove

THEOREM 3. A set E=(y,) in I' is a A, set if and only if one of the

Jollowing equivalent conditions holds:
(i) I*(E) = .#(L}):;

(ii) B(E) = .#(LL);

(iii) co(E) = -4 (Lg);

(iv) for any ge C(G) the series Z I (1) g(y) <y, - > is unconditionally con-
vergent in the norm of C(G)/JgnC;

(iv') for any ge L*(G) the series in (iv) is unconditionally convergent in the
norm of L*(G)/Jg.

Since, as was stated just before, unconditional norm convergence of
Fourier series of all f in L, means that E is a A, set, the necessity and
sufficiency of (iv) and (iv’) follow from (1). Condition (i) is obviously necess-
ary. Since (i) = (ii) = (iii), we must prove that (iii) is sufficient. To this aim we
observe that co(E) N .#(L}) is closed in .#(L}). Hence, assuming (iii), co(E)
is closed in .#(LL). Thus the uniform norm ||||, and the multiplier norm
II-ll are equivalent for co(E). Now, on account of Theorem 1, every
he .# (L) is the pointwise limit of a sequence of members of ¢, (E) bounded
in multiplier norm. But this time this means uniform boundedness. Thus
I*(E) = .#(L}), whence #(LL)=I1°(E) and ||h|| ~ ||hl|,, in this space. This
implies uniform boundedness of all finite sum operators Sy for feLl (by
taking 0-1 multipliers), which means the A, condition.

Remark. It is well known that A, sets can be characterized by the
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identity
L2 =C(G)JgnC or I%=L"(G)Jg

(see [1], pp. 230-231). Thus (iv) and (iv)) mean that unconditional conver-
gence involved there implies these identities. The converse is obvious.

THEOREM 4. If ¢o .4 (Ly) = B(E), then .#(L.) = B(E).

Proof. The space co(E)n .#(L}) is closed in B(E) by (5). Thus the
multiplier norm and the B(E) norm are equivalent for co(E)n #(LL). In
particular, they are equivalent for multipliers with finite support. Hence the
result follows from Theorem 1.

Theorem 4 means that if there exist wild multipliers on L., then there
exist such multipliers also in ¢, (E).

Let us observe that examples of wild multipliers we gave in Section 2
belong to B(E). In fact, their supports lie in sets (called S) being finite unions
of Hadamard sets, thus Sidon sets, and by the known theorem of Drury the
characteristic function of a Sidon set is in B(I'). It would be interesting to have
some characterization of those sets E for which .#(L}) has some (wild)

multipliers beyond B(E).

4. In this last section we prove a general theorem characterizing in some
way sets like Sidon sets (where all 0-1 functions are in .#(Cg)), A, sets
(where all 0-1 functions are in .# (L)), etc.

THEOREM 5. Let X be a Banach space and T a countable set whose
members x, fulfil the following conditions:

(i) There exist linear forms a, such that a,(x,) = 6,m and.every xeX is
uniquely determined by the sequence (a,,(x))f or, in other words, by the formal
series

S(x) = fa,(x) X,
1

(we then write x ~ Y a,(x)x,).
(ii) For every subset A of T there is a projection

Py x> ) a,(x)x,~P,yxeX.

xpeAd

Then all P, are uniformly bounded in the operator norm. If in addition
\x,} is linearly dense in X, then (x,) is an unconditional basis of X.

Proof. Writing ¢,(x,) =1 if x,e A and ¢,(x,) =0 otherwise we have
defined a 1-1 correspondence between the class of subsets of x, and the
Cantor group D = C%. Thus we may identify ¢, with a point in D. By the
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closed graph theorem all projections referred to in (2) are bounded. For any
C>0let &= @, ||PJ| <C}. Then

D= { &,
m=1

Let us write A ~ B for the symmetric difference (4\B)uU(B\A). Then
@4 = @g is the group operation in D. The crucial point is that, for any m and
n, there exists r such that ¢, ~ &, = @,. In fact, let Ae®,, and Be®P,. We
observe first that for any E€®, we have ||P.|| < m+1, which follows from
the identity x = Pgx+ P x. Hence

IP g\pll = |Pge Pall < m(n+1).

Equally, [|Pg 4|l < n(m+1). This proves the claim with r = 2mn+m+n.

It is easy to prove that @, are measurable sets. Thus the Haar measure
|®,| is positive for m > m,. Consequently, ®,,, ~ ®,,, contains an open set in
D and is contained in some @,. By compactness argument there is a finite set
of points t;e D; in other words, a finite number of sets A4; = T (@4, = 1)),
such that

D = U [(¢'"0 = ¢”‘0) = {tj}]'

Hence the first part of Theorem 5 is proved taking into account that

sup ||P,]| < 2rs+r+s, where s = maxllPAjM.
Ae2'

Since, in particular, the norms ||P,|| are commonly bounded for all finite
sets A — T, the partial sum operators on S(x) (xe X) are commonly bounded
for any fixed ordering of T. Hence the second part of Theorem 5 follows
from the first one.

Remark 1. It is obvious that if the norms ||P,|| are commonly bound-
ed for finite A’s, they are commonly bounded for all A’s. Hence, on account
of the Banach-Steinhaus theorem, we obtain the following converse of
Theorem 5:

If T =(x,){ is an unconditional basis for a Banach space X, then the
projections P, into the subspaces of X generated by A are commonly bounded
for all Ae2™.

Remark 2. If we consider the Haar measure on D as probability, we at
once deduce from the proof of Theorem § that if (i) and (ii) are fulfilled, then
either the projection P, exists for every A — T or for almost none.

We do not think that Theorem 5 has any application. It rather expresses
a general and very plausible regularity. We can illustrate it, for example, on
function spaces with no natural ordering: if I' is a discrete countable non-
ordered abelian group, we may take X = I% (= L5 (I), p > 1, E = I). Then we
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obtain a characterization of “sets of unconditional convergence” (this means
that the Fourier series of any fe L% converges unconditionally) as those for
which the projections P, f (f e L) exist for all subsets A of E.
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