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I. INTRODUCTION

A topological space is called supercompact [9] if it has a closed subbase
such that every linked subcollection has a non-empty intersection (every
two members have a non-empty intersection). Each supercompact space
is compact. A major problem in this area is to arrive at a more intuitive
geometric characterization of this concept. Several algebraic charac-
terizations are known, e.g., by graphs [10] and by interval structures [5].

Among the supercompact spaces there are included compaet metric
spaces ([16] and [6]) and compact tree-like spaces ([6] and [11]). Super-
compactness is productive and each Tychonoff space can be embedded
in many supercompact extensions [16]. Supercompact spaces are partic-
ular examples of spaces with finite compactness number [4].

Among the compact non-supercompact spaces there are included:
pX for X non-pseudocompact ([2] and [7]), infinite compact spaces.
with no non-trivial convergent sequences [7], and any compact space X
which contains a dense subspace D of weight less than the cellularity of
the growth X —D [3]. The simplest known example in this category, due
to van Douwen, is the Alexandroff one-point compactification of the com-
plete Cantor tree (cf. [14]). There is also a consistent example of a countable
space no compactification of which is supercompact [12]. All of the fore-
going spaces are not even continuous images of neighbourhood retracts.
of supercompact spaces.

It is unknown whether dyadic spaces (Hausdorff continuous images
of some power of 2) are supercompact (P 1179). Hausdorff continuous
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images of supercompact Hausdorff spaces are natural generalizations
of dyadic spaces. The large body of knowledge on dyadic spaces suggests
many similar questions about supercompact spaces. A good discussion
of this is contained in [7]. The authors raise the question of whether
a closed G,-subspace of a supercompact Hausdorff space is supercompact
or at least the continuous image of one. Closed G,-subspaces of dyadic
spaces are known to be dyadic [8]. In this paper we answer this question
in the negative, moreover, our counterexample is also first countable.

II. BASIO DEFINITIONS AND NOTATION

Let v ={0,1,2,...} and # ={0,1,...,5—1}. If h: X — ¥, then
domh = X and, for a subset A of X, htA is the restriction of the mapping A
tod,”2 ={f:f:wo—2andf #0}and 2 = {fMk:fe®2and 1 <k < w}.

“2 has a natural lexicographic total order defined on it; namely,
f < g iff for the least number » such that f(n) # g(n) we have f(n) < g(n).
The symbol < is also used for the usual total order on o; however, no
confusion should arise since we use f and g for mappings and » and m
for natural numbers.

By definition, a collection & of closed subsets of a topological space X
is a closed subbase iff for each # € X and for each closed subset C of X with
x ¢ C there exists a finite subcollection & of & such that « ¢ (_J# and
C = [U#. A collection of sets is binary if each linked subcollection has a
non-empty intersection. Therefore, a space X is supercompact if X has
a binary closed subbase.

III. A FIRST COUNTABLE SUPERCOMPACT HAUSDORFF SPACE X
WITH A CLOSED Gs NON-SUPEROCOMPAOT SUBSPACE

To begin, we first product a space K with certain crucial properties.

PRrOPOSITION. There exists a first countable supercompact Hausdorff
space K with binary closed subbase & satisfying the following properties:
For each f e 2, there ewists {8;, L,, B;} = & such that

KO. 8, i3 both open and closed in K and both L, and R, are closed in K.

K1. 8;VL,UR, = K and 8,n(L,VER,) = O.

K2. {8,: f € "2} is linked. Consequently, since & is binary, we have
N {8;: f e “2} 0.

K3. f< g implies R,NL, # @.

K4. f<g implies (a) Ly< L, and R, < R,; (b) 8,nL, #D; and
(c) B,NS, # 0.
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Proof. Let M = ®2 x{0,1}. For each fe “2, write
A, ={(9,0): 9<f}V{(g,1): g <f}

B, = {(g,0): 9> f}\{(g,1): 9= f}.

Generate a topology on M by using {A,:fe “2}U{B,: fe "2} as a
closed subbase. For the original construction of such a space, see [1].
M is a first countable supercompact Hausdorff space with binary closed
subbase {4,: f € “2}U{B,: f € *2}. Set K = M x M and give K the product
topology. For each fe ®2, put

8, =A,xB;,y, L, =MxA4, and R, =B/XxXM.
Write
S = {8,: f € “2}U{L,: f € "2} U{R,: f € “2}U{ M X B,: f € “2}u
V{4, x M: f € “2}.
Then K and & are as required and the 8/s, L’s, and R/s satisfy
KO0-K4.

Now, take any such space K along with a binary closed subbase &
which contains 8,’s, L’s and R/s satisfying K0-K4. Assume that K € &.
Write

and

X = [*2]u[*2 x{0, 1}]JU[*2 X K].

1. Definition of the topology on X. Points of ®2 are isolated. For
each p € ®2, {p} X K is open and closed in X and has the topology of K.
Bagic open neighbourhoods of (f, 0) are of the form

U7 ={(f, pu{frk: &> n}UkL>J ({fri} x 8).
Basic open neighbourhoods of (f,1) are of the form
? =[{(g,%): g =fin and i {0, 1}}U{p e®2: pMn = fIn}U

vU{{p} x E: ptn = fin}] - T}.

This is a valid neighbourhood assignment which endows X with
a first countable Hausdorff topology. Moreover, as 8, is clopen in K, so
also is each Uy clopen in X. Furthermore, this topology is compact. To
see this, let 0 be an open cover of X by basic open sets. Since ®2 x{0, 1},
as a subspace of X, is the Alexandroff double of the Cantor discontinuum,
finitely many members of @ suffice to cover it. All that remains to be
covered is finitely many points of 2 and finitely many {p} x K’s. Since K
is compact, we are done.

Let ¥ = [®"2]U[®2 x{0,1}]. Y is a closed G,-subspace of X. It is
known that Y is not a continuous image of a supercompact space [7].
We proceed to show that X is supercompact.



236 M. G. BELL

2. Construction of a closed subbase ¥ for X. For each p € “2, put
D, = {g €*2: gtdomp = p}U{(f, ¢): frdomp = p and i € {0, 1}}u
VU {{g} x K: ¢ €2 and gMdomp = p}.
CrAmM 1. For each p € °2, D, is closed in X.
We have
X —D, = {ge®2: gidomp # p}u J{U™": frdomp 3 p}u
v J{7¥™?: fidomp # p}u U{{g} x K: ¢ € ®2 and gMomp # p},
which is a union of open sets.
For each fe “2, put
A} ={grk: g <f, 1<k < o and gk # frk}{(g, 0): g < f}u
V{(9,1): g<flV Uy} xK: g < f, 1< k< » and gtk +# frk}u

VI XLy 1<k < o)
and
A} ={grk: g>f, 1<k < o and gtk # frk}U{(g, 0): g > f}u
Vg, D:g=>fluUlgrk} xK: 9> f, 1<k < o and gtk +# frkju
VU xR 1<k < o}
OrLAT™M 2. For each f € ®2, both AS and A}, are dlosed in X.
We prove that A} is closed in X. For each g > f, choose n, <  such
that g, # fM,. Then
X—A%={grk:g>f and 1 <k < o}V UfU,’,‘aUU}U
o>

U UV Ulgrk} xE: g>f, 1<k <o and gtk # fik)U
o>f

v Uk} x (K —Ly): 1<k < o},

which is open. Using K1 we get §,nL, = @, and, by KO, L, is closed in K.
Similarly, to prove that A4; is closed, we observe that S,NnR, = @
and that R, is closed in K.

CLAmM 3. For each fe ®2, AjUA; = X —T;.
Indeed, by K1, we get S,U(L,UR,) = K.
OLAIM 4. f< g implies A) < A) and A, < A;.
Here we use K4(a): f < g implies L, < L, and E, < R,.
Now, set
o = {A3:fe®2}, & ={4;:fe"2},
€ ={Up:fe“2and 1<n<w}, 2 ={D,:pe"2},
& =|{p}x8:pe”2 and Se¥] and F =|{p}:pe"2}.
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Finally, let
G = JUBUEUDUEVF .

To show that # is a closed subbase for X we consider several cases.
To begin, let z € X and let C be a closed subspace of X with z ¢ C. For
each case, we must find a finite subset ¥’ of ¥ withz ¢ | J9'and C < | J¥"'.

Case (i). # € ?2.
Choose f € 2 such that frfdomz = . Then
C = X —{a} = AJUAVTP™2HU{f k: k < doma}U
U (J{fk x 8,: k < domua}.
Case (ii). @ € 2 x{0}.

Since z ¢ C, there exists a neighbourhood U? of 2 such that U;NC = @.
Therefore,

Ccs X—-U2 =AJ0A U{ztk: k< n}u | J{{ork} X 8,: &k < n}.

Case (iii). # € *2 x{1}.
Since # ¢ C, there exists a neighbourhood V7 of « such that V3nC = @.
Therefore,

Cc X-V:=J{D,: domp =n and p # sMm}u{p: domp < a}u

v Ul{p} x K: domp < n}UT];.
Case (iv). 1 €®2 X K.
Let ¢ = (p, k). Since Cn({p} x K) is a closed subspace of {p} x K
and & is a closed subbase for K, there exists a finite &' = & such that

Cn({p}xE)s Ul{p} x8: 8es’}] and =¢U|{p}x8:8e5).

Therefore
0 s [Cn({p} x K)]V[X —({p} X K)]
c U{{p} x 8: 8 e #'}u | J{D,: domq = domp +1}U
v U|{g} x K: domg < domp and ¢ # p}u{q € 2: domg < domp}.

Note that x is not an element of the right-hand side of this inclusion.

3. Linkage conditions. At this point we list conditions that are implied
by pairs of members of ¢ being linked. These conditions follow directly
from the definitions. The reader is encouraged to check each one as this
is the backbone of our argument.

LCL1. {4}, A} is always linked. Moreover, if f<g, then 4} < Aj.

LC2. {4}, A}} linked implies g < f.

LC3. {4}, U2} linked implics g < f.
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LC4. {4}, D,} linked implies there exists a g < f such that gfdomp
= p.
LC5. {4}, {p} x 8} linked implies either fpddomp = p, in which case
SnL, #0, or fidomp # p, in which case there exists a g < f such that
gidomp = p. In the latter case, {p} X K < Aj.

LC6. {4}, 4;} is always linked. Moreover, if f<g, then A} < A}.

LCT7. {4}, U} linked implies g > f.

LC8. {4;, D,} linked implies there exists a g > f such that grdomp
= p.

LC9. {4}, {p} x S} linked implies either f)/domp = p, in which case
SNnR, # @, or ff{domp +# p, in which case there exists a g > f such that
gidomp = p. In the latter case, {p} x K < A4;.

LC10. {U7, Uy} linked implies ftmax{n, m} = gimax{n, m}.

LO11. {U7, D,} linked implies frdomp = p.

LO12. {U}, {p} x 8} linked implies domp>n, fidomp =p, and
8Sn8, # 0.

LC13. {D,, D,} linked implies either pPdomg = ¢, in which case
D, < D,, or gddomp = p, in which case D, < D,.

LO14. {D,, {g} x 8} linked implies gidomp = p, in which case
{¢§ x8 < D,.

LC15. {{p}x 8, {q} XT} linked implies p = ¢ and SNT * @.

4. ¥ is bimary. Since X is compact, it suffices to show that each non-
-empty finite linked subcollection ¥’ of ¥ has a non-empty intersection.
Let 9’ be such a collection. If ¥’'NF = @, then (¥’ is clearly non-empty.
So, assume that ¥'NnF = 9.

Case 1. 9'Nn& #£9.
By LC15, we conclude that there exist p € ®2 and a non-empty finite
linked subcollection &' < & such that

g'ne = |{p} x8: 8 e &'}.

Since we are trying to show that (¥’ # @, we may assume that no
one member of ¥’ is contained in another member. This implies, by LC14,
LO1 and LC6, that ¥’ N9 =G and that ¥’ contains at most one 4 and
at most one 4}. It also implies, by LC5 and LC9, that gfdomp = p and
&'U{L,} is linked, and hpdomp = p and &’ U{R,} is linked. If both 4 and
A} are present, then LC2 implies b < g. In this case, K3 implies L,NR;, +# @.
Hence &'U{R,, L,} is linked. Furthermore, there exist a finite (possibly
empty) F < “2 and, for each fe F, an n, < w such that

9'Nn€ = {U/: f e F}.
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From LC12 and K2 it follows that &'U{8,: fe F} is linked,
domp > max{n,: fe F} and, for each feF, fpdomp = p. LC3 implies
max{f: f e F} < g, whence from K4(b) we conclude that {S,: f e F}U{L,}
is linked. LC7 implies that A < min{f: f € F'}, whence from K4 (¢) we con-
clude that {8,: fe F}U{R,} is linked. Hence <'U{L,, R,}V{8,: fe F}
is linked. Since & is binary, choose

ze(\S NnL,nR,nN 8.

Then JeF
(P, ) e N{{p}x8: 8 e .SP’]nAgrSA,‘,nQFU}‘f.

Case 2. 9N(CUF) =0 and 9'N¢ # 0.

By LC10, we conclude that there exist a non-empty finite subset
F < 2 and, for each f € F, an n, < o such that 9'n¥¢ = {U;’: f € F} and,
for each f, # f, in F,

fitmax{n,: f € F} = f,tmax{n,: f € F}.

Again, we may assume, by LC1l, LC6 and LC13, that ¥’ contains
at most one A), at most one 4; and at most one D,. LC7 and LC3
imply that

h < min{f: fe F} <max{f: feF}<g.

K2, K4(b), K4(c), and K3 imply that {8,: f e F}U{L,, R,} is linked.

Since & is binary, choose

ze\8NL,NR,.
el

Let m = max({n,: f e F}u{domp}). By LCll, we infer that, for
each f e F, ff{domp = p. Thus, for each f; # f, in F, f,im = fyIm. Let ¢
be this common value. Then gitdomp = p.

Subcase 2 (i). gtm =q and hMm = q.
Then

(g, ©) E,Or [{fr'm} X Sf]n[{g Mm} X La]n [{h Mm} X By]N [{Q} x K]
c N U/nASNALND,.
JeF

Subcase 2 (ii). gMm = q and hMm # g.
Since h < min{f: f e F}, we have {g} Xx K < A}. Then
(g, @) ejQ[{frm} x81n[{gMm}x LIn[{g} x K] < ,Q U/nAYNA\ND,.

Subcase 2 (iii). gMm # ¢ and htm = q.
Since max{f: fe F} <g, we have {g} X K < Aj. Then

(g, @) eQ[Urm} x 8, 1N[{g} X K1n [{htm} X B, ]n[{g} X K]

s NUZNnANALND,.
JeF
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Subcase 2 (iv). gMm # q and hdm # gq.
Since h < min{f: fe F} < max{f: fe F} <g, we have {g} xK < 4,
and {g} x K < A}. Then

(g, %) € QF[UPm} X 81N [{g} x K1n [{g} x K]1n [{g} X K]
c NU/NANAND,.
JeF

Case 3. 9'N(CUEVF) =0 and 9'N2 # 0.

Again, we may assume that ¥’ contains exactly one D,, at most
one AJ, and at most one A4;. By LC4, LC8 and LC2, we conclude that
there exists an ! < g such that If[domp = p, there exists a k > h such that
kMomp =p and h<g. If gfdomp = p, then

(9,1) e D,nAJNA].
If hf{domp = p, then
(b, 1) e D,n AN A},

If gfdomp # p and Aprdomp # p, then I < g and k> h. Hence
{p} x K = D,nA)n A}

g

Case 4. ¥'N(EVIVEVF) =0 and 9'N(FUAB) #O.
Again, we may assume that 9’ contains at most one A4) and at most
one A} and the fact that they are linked does the trick.

Exhausting all possible cases, we conclude that ¢ is binary.

IV. DISOUSSION

In the example constructed here, the subspace “2 x {1} is a closed
non-G,-subspace of X. This leads to the question of whether a closed
subspace of a perfectly normal supercompact space is supercompact.
In general, is a compact perfectly normal space supercompact? (P 1180)

The difficulty in working with supercompact spaces is perhaps illus-
trated by the fact that it is unknown whether the union of two super-
compact subspaces of a Hausdorff space is supercompact. (P 1181)
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