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1. Introduction. Since 1922, when Banach, Hahn, and Wiener (inde-
pendently) axiomatized and investigated complete normed linear spaces,
much effort has been devoted to the study of these spaces. In 1928 Menger
[9] laid the foundation for characterizing spaces metrically, when he
gave necessary and sufficient conditions for a metric space to be con-
gruent to an n-dimensional euclidean space. By appealing to some of
Menger’s theorems, Wilson [11] was able to characterize (metrically)
generalized euclidean space among a certain class of metric spaces. Blumen-
thal [2] observed that Wilson’s property could be weakened considerably
and still obtain the same result.

Numerous papers have appeared which characterize inner products
spaces among the class of normed linear spaces (over the reals). One of
the most memorable of these is the condition of Jordan - von Neumann
[8], which has long been a standard, showing it is implied by newly postu-
lated conditions. Blumenthal [3] metrized the Jordan-von Neumann
condition and by the use of this metrization was able to characterize
real inner-product spaces among the class of complete, convex, externally
convex metric spaces. He obtained generalizations of both the Jordan - von
Neumann condition and his own [2]. Many of the properties which char-
acterize real inner-product spaces have analogous properties which
characterize non-euclidean spaces, for example see [5] and [10]. Busemann
[6] used a somewhat different approach to characterize euclidean and
hyperbolic spaces.

Young [12] introduced three conditions, which he used to distinguish
between euclidean, hyperbolic and elliptic geometries in spaces satisfying
the axioms of Hilbert’s groups I, II, IIT and V, namely, the axioms of
connection, order, congruence, and continuity. In 1935 two short articles
by Aronszajn appeared [1], in which a metric characterization of normed
linear spaces was stated. The characterization, which appeared without
proof, made use of a metric restatement and generalization of Young’s
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condition for euclidean geometry. Andalafte and Blumenthal [4] gave
the following complete metrization of Aronszajn’s assumption:

THE YOUNG POSTULATE. If p, q and r are points of a metric space M,
and if ' and r’ are the midpoints of p and q, and p and r, respectively, then
qr =g

Ficken [7] proved that an inner-product can be defined in a complete,
real, normed linear space if and only if, for elements p and ¢q of the space,
the equality of the norms of p and ¢, ||p|| = |lq/|, implies

14-p+p-qll = llu-p+2-ql
for all real numbers A and .

Andalafte and Blumenthal [4] metrized this property in the fol-
lowing way:

THE FICKEN POSTULATE. If f is the foot of a point p on a line L (p not
on L) and if q and v are points of L with fq = fr, then sq = sr for each point s
of a line L(p, f), joining p and f.

Assuming the Young Postulate, they obtained a characterization
of Banach spaces. Certain results were obtained using only the Ficken
Postulate. Then, combining these results with the ones obtained from
the Young Postulate, they gave a characterization of euclidean space.

In this paper we introduce a stronger form of the Ficken Postulate
and show that it immediately implies the space is euclidean or hyperbolic.
To distinguish between the spaces, we adjoin a weak form of the Young
Postulate for the respective spaces.

In the process of obtaining this characterization, the authors observed
that if a congruence between two triples of non-collinear points could
be extended to a congruence between one of points and the line of the
other two points and the corresponding point and the line of the remaining
two points, then the space in question is hyperbolic or euclidean. This
observation establishes a conjucture of Busemann [6], since it is a weak-
ening of his assumption.

Unless otherwise noted all terms used in this paper have the same
meanings as those given in [2]. ’

2. Metric characterizations. We now suppose M is a metric space
which is (1) finitely compact, (2) convex, (3) externally convex, and (4)
has the two triple property. Assuming M also satisfies either the Congru-
ence Extension Postulate or the Strong Ficken Postulate, we will show
that M also satisfies the criteria of Busemann [6] and is, consequently,
euclidean or hyperbolic. The Congruence Extension and the Strong Ficken
Postulates are as follows:

(C.E.) THE CONGRUENCE EXTENSION POSTULATE. If p,q,» and
p'sq,r are any two triples of non-collinear points such that p, q, v ~ p’,
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q',r'y then this congruence can be extended to a congruence between {p}u
UL(q, r) and {p'}VL(q’, r').

(S.F.) STRONG FICKEN POSTULATE. Suppose p and p' are points of M,
L and L’ are lines of M, and suppose f and f' are the feet of p and p’ on L
and L', respectively. If pf = p'f’, then for each pair of points q and r on
L(p, f) and L, respectively, and for each pair of points ¢’ and r' on L(p', f')
and L', respectively, if fq = f'q and fr = f'r', then qr = ¢'r’

In order to make use of the results of Busemann mentioned above,
it is necessary to consider the equidistant locus of two points s and s’
of M.

Definition 2.1. The equidistant locus of two distinet points s and s’
of M, denoted by m(s, s’), is the set of points p such that ps = ps'.

THEOREM 2.1. If M satisfies the Congruence Extension Postulate, then
the equidistant locus of two distinct points of M s linear.

Proof. Suppose s,s8’ are distinet points of M and p, ¢ are points
in m(s, 8’). If # is any point on L(p, q,), then since p, q, s ~ p, ¢, 8’ (by
C. E.), this congruence may be extended to {s}UL(p, q) ~ {s'}UL(p, q),
and since the line joining p and ¢ is unique (by the two-triple property),
it follows that sz = s’x. Therefore L(p, q) is contained in m(s, s’).

It now follows that M is euclidean or hyperbolic, since Busemann [6]
has shown that a finitely compact metric space with unique straight lines
is hyperbolic or euclidean if and only if the equidistant locus is linear.
We thus have the following characterization theorem:

THEOREM 2.2. A finitely compact, convex, externally comvex metric
space which has the two-triple property is hyperbolic or euclidean if and
only if it satisfies the Congruence Ewtension Postulate.

THEOREM 2.3. If M satisfies the Strong Ficken Postulate, then M
satisfies the Ficken Postulate.

Proof. This is clear, since p, p’ and L, L' need not be distinct, in
which’ case the Strong Ficken Postulate is just the Ficken Postulate.

THEOREM 2.4. If M satisfies the Strong Ficken Postulate, then M
satisfies the Congruence Extension Postulate.

Proof. Suppose p, ¢, r and p’, ¢, r' are two triples of non-collinear
points of M with p, q,r ~ p’, ¢’, r'. Let f and f’ be the feet of p and p’
on L(q,r) and L(q’, r'), respectively. That the foot of a point on a line
is unique follows as in [4]. If pf = p’f’, an easy application of the Strong
Ficken Postulate gives the result. Suppose then that pf # p'f, and
assume the labeling such that pf < p’f’. It follows that & point ¢ of L(p, f)
exists such that {f = p’f’ and tpf holds. By the monotone property [4],
there are points x, y on L(q, r) such that tx = p'¢’, ty = p'r', and «, f, y
satisfy the same betweeness relations as ¢’, f', 7. From the Strong Ficken
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Postulate it is easily seen that f is the foot of ¢ on L(p, f). Thus « and y
must both be between ¢ and r, for if it is assumed that zqf holds, then,
by the monotone property, it would follow that xt > ¢f. But the monot-
one property also implies ¢¢ >¢p contrary to the fact that xt = ¢p.
Thus ¢gzf holds and, similarly, fyr holds. However, it follows from the
Strong Ficken Postulate that zy = q'r’, but this contradicts xy < ¢r
= ¢'r’, which completes the proof.

Applying Theorem 2.2, we obtain the following characterization:

THEOREM 2.5. A finitely compact, convex, externally conver metric
space which has the two-triple property is euclidean or hyperbolic if and
only if it satisfies the Strong Ficken Postulate.

Since for any three points p, q, r of euclidean space, if ¢’ and »' are
the midpoints of p and ¢q and p and r, respectively, it follows that ¢'»’
= }¢qr and, for any three non-collinear points p, q, r of hyperbolic space
with ¢, ' as before, ¢'" < }¢qr, we introduce the following weak forms
of the Young Postulate:

WEAK YOUNG POSTULATE (EUCLIDEAN). There exist three non-collinear
points p, q, r of a metric space such that if ¢’ and v’ are the midpoints of p
and q and p and r, respectively, then ¢'r' = Lqr.

WEAK YOUNG POSTULATE (HYPERBOLIC). There exist three non-collinear
points p, g, r of a metric space such that if ¢’ and v’ are the midpoints of p
and q and p and r, respectively, then ¢'r’ < 1qr.

Since no three non-collinear points of euclidean space satisfy the
hyperbolic Weak Young Postulate, and no three non-collinear points of
hyperbolic space satisfy the euclidean Weak Young Postulate the fol-
lowing four theorems are immediate:

THEOREM 2.6. A finitely compact, convex, externally convex metric
space which has the two-iriple property is congruent to a euclidean space
of finite dimension if and only if it satisfies the Strong Ficken Postulate
and the Weak Young Postulate (Euclidean).

THEOREM 2.7. A finitely compact, convex, externally convex metric
space which has the two-triple property is congruent to a hyperbolic space
of finite dimension if and only if it satisfies the Stromg Ficken Postulate
and the Weak Young Postulate (Hyperbolic).

THEOREM 2.8. A finitely compact, convex, externally convexr metric
space which has the two-triple property i8 congruent to a euclidean space
of finite dimension if and only if it satisfies the Congruence Extension Pos-
tulate and the Weak Young Postulate (Euclidean).

THEOREM 2.9. A finitely compact, convex, externally convexr metric
space which has the two-triple property is congruent to a hyperbolic space
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of finite dimension if and only if it satisfies the Congruence Extension Pos-
tulate and the Weak Young Postulate (Hyperbolic).

3. Conclusions and questions. It follows from Section 2 that the
Strong Ficken Postulate and the Congruence Extension Postulate are
equivalent in finitely compact, convex, externally convex metric spaces
which has the two-triple property, and the Strong Ficken Postulate
implies the Ficken Postulate in such a setting. If M is a finitely compact
normed linear space over the reals, then the Strong Ficken Postulate
and the Congruence Extension Postulate may be stated in terms of norms
as follows:

STRONG FICKEN POSTULATE. For each quadruple of vectors p, q, p’, ¢, if

p+al =lp—al =lp"—¢1 =Ip"+4'l,
then
Aeptpgl = Rp—pdl =P +u gl = '~y
for all real numbers A and u.
CONGRUENCE EXTENSION POSTULATE. The equality of norms |p| = |p’'|,
gl = 1¢'| and |p—q| = |p"—q'| implies |p—2-q| =|p'—2-q'| for each
real number A.

We then immediately obtain the following characterizations of real
inner product spaces:

THEOREM 3.1. A finitely compact normed linear space over the reals
which has the two-triple property i3 an imner product space if and only if
1t satisfies the Strong Ficken Postulate.

THEOREM 3.2. A finitely compact normed linear space over the reals
which has the two-triple property is an immer product space if and only if
it satisfies the Congruence Extension Postulate.

It follows that in a finitely compact normed linear space with unique
straight lines the Strong Ficken Postulate, the Ficken Postulate, and the
Congruence Extension Postulate are all equivalent. It would be interesting
to know if the Ficken Postulate is equivalent to the other two postulates
in a finitely compact, convex, externally convex metric space which has
the two-triple property (P 798). Of course, if it is equivalent to one of
them in such a setting, then it is equivalent to both.
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