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A VARIATIONAL METHOD FOR A CLASS
OF ODD FUNCTIONS IN AN ANNULUS
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RENATE McLAUGHLIN (FLINT, MICHIGAN)
1. INTRODUOTION
Let R denote the annulus {z:r, < [2| < 1}. The class ¥, introduced

by Gaier [2], consists of functions that are holomorphic and schlicht in R
and that satisfy the three conditions:

1) If(R) <1 (2¢E), [f(2)] =1 (le] =1),
(2) f() #0 (2¢R),
(3) fQ) =1.

The class F' and related classes have been considered in many papers.
Duren and Schiffer [1] considered the classes F, (functions in F, satisfy
all conditions for functions in F, except the normalization (3)) and F,
(functions in ¥, need not satisfy conditions (2) and (3)). Gehring and
Haillstrom [3] obtained distortion theorems for the class ¥ and for the
subclass of functions whose image is symmetric in the origin. Recently,
a subclass F, of F has been introduced [5] consisting of functions whose
image is symmetric with respect to the real axis. Some extremal problems
that are inaccessible in F' could be solved in the smaller class F,.

In this paper, we consider two subclasses of F, consisting of functions
with a rotational symmetry, namely

f(—=2) = —f(2).
These classes are
F,={feFy: f(—2) = —f(r)} and F3=F,NnF.
Clearly, both F, and F, are compact. Note that with each feF,,

each rotation ¢”f (6 real) also belongs to F,, whereas Fy does not contain
any non-trivial rotations of its members.
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In Section 2, we derive variational formulas for ¥, and #,, and in the
following sections, we apply these variational formulas to various extremal
problems. Known extremal functions for the class F, do not have the
rotational symmetry of functions in #,. The solution of extremal problems
in F, or F; will therefore shed more light on the behavior of conformal
maps of doubly connected domains.

2. VARIATIONAL FOEMULAS

Each feF, maps E onto the unit disk minus some continuum I7
that contains the origin. If f belongs to ¥, or Fg, then I, is symmetric
with respect to the origin.

Suppose f belongs to F,. Fix wyely, say w, # 0. Let D,(w,), ¢ > 0,
denote the domain consisting of all points either exterior to I or exterior
to the disk |w —w,| < ¢. There exist [1] functions of the form

ap*w

Flw) =w+ (0 —wo) Wy

+0(¢?)

that are analytic and univalent in D,(w,) and leave the origin fixed. Here
the constant ¢ depends on ¢ (|a] = |a(e)| < 1), and the error term O(p?)
can be estimated uniformly in each closed subdomain of D, (w,).

Either Rew, # 0 or Imw, # 0; say Imw,> 0. Choose p so small
that the circle |w —w,| = o does not intersect the real axis. Then there
exists a function of the form h(w) = w/(w +w,) + O(e) such that A is de-
fined and satisfies a Lipschitz condition in the half-plane Imw > — i Imw,
(hence the function w —age2h(w)/w, is univalent in this half-plane for
0 < go) and such that the composite function

H(w) = F(w)— %’—h(ﬁ*(w))

2a0%w
=w+ wz_w§+0(es) (Imw > 0, we.D,(w,))
satisfies the condition H(—w) = — H(w) for real values of w. Clearly, H

is univalent in D,(w,)N{w:Imw > 0} and preserves the origin. Now
extend H to a univalent function in D,(w,) N D,(—w,) by setting H( —w)
= — H(w).

We may now proceed as in [1]. The function w3(1 —wiw?)™' satisfies
a Lipschitz condition in |w| < 1, so that the function

@ (w) = w—2ae2w3 (1L —wyw?)~!
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is univalent for sufficiently small values of ¢. But then the composite
function

2a0%w 2a0%w?

o (H(w)) =w+ +0(0%)

w:—wp 1—wpw?

is univalent in D, (w,) N D,( — w,). Moreover, it is easy to check that ¢(H (w))
preserves the unit circle up to order g3, and we obtain the following varia-
tional formula for the class F,:

ap?w?

@ aQ’
Veltw) =w 1+w2—’w§ C1-ww?

) + 0(¢%).
The variational formula for F; is given by the relation
VO (w) = (V) VE (w),

and we summarize these results as follows:

THEOREM. If f(2) belongs to F,, then V£ (2)) (o < o,) also belongs to F,,
where
ap? ap?w?

— 2) + 0(e?).

2wy 1—wWw

VO (w) = w (1 +

If f(2) belongs to Fy, then VO(f(2)) (e < o,) also belongs to Fs, where
a0?(1 —w?) ag?(1—w?)
(w? —wp) (1 —wy) (1 —wow?)(1 ~,

VO () =w(1+ : )+0(93)-

3. MAXIMUM AND MINIMUM VALUE OF |f(s)]

Suppose that f is an extremal function for the problem

max|g(?)|.
geFy

Then |V&®(f(2))| < |f(2)l. This inequality leads to the relation
a2

1
2 - — 3 <
Re [“9 (az—wz 1—a2wz) +0(e ’] 0,

where a = f(2). By Schiffer’s lemma (see [6] and [1]), the omitted conti-
nuum 7 satisfies the differential condition '’ (t)2s(w(t)) > 0, where

| 1 a?
) = E T T T e

Without loss of generality we may assume that a > 0, so that

g(w) = (1—a*) (a®—w?)~ (1 — a2w?)~!.
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The differential condition thus becomes

w' (1) .
(0@ L —aw()) ~

The solution through the origin is w(l) = af (-1 <?<1), and I}
is an interval of the real axis, symmetric about the origin.
For the minimum problem, the differential condition for I} becomes

w' (£)3(a® — w?)~ (1 — a?w?)~' < 0,

and I} is an interval of the imaginary axis, symmetric about the origin.

(The results of this section should be compared with those of Gehring
and Hillstrom [3] who use as an important tool a lemma of H. Grotzsch;
see also Teichmiiller [7], p. 631-63b.)

4. DISTORTION

Suppose f is an extremal function for the problem

max [g'(2)|.
ger

Then |V¥)(f(2))'| < If’ (2)], which leads to the relation

a® +w; a?(3 — a%wp)
R%”%mhww A —aw)

)+mwﬂ>m

where a = f(2). Again we may assume that a > 0. Thus I} satisfies the
differential condition w’(t)’s(w(t)) < 0, where

a? +3a® + (1 — 8a* — a®) w? 4 (a? + 3a®) w*
(a2 _ 'w’)z(l — a?w?)? *

(4) s(w) =

I o> VV5—2 = 0.4858..., then I} is a segment of the imaginary

axig, symmetric about the origin. If a < 1/1/5 —2, then the polynomial
1+cw?+w* (¢ = (1 —8a*— a®)/(a? +3a®)) has a root w = iw, (a < w, < 1).
The solution curve through the origin of the differential condition consists
of the segment w(t) = it (—w, <t < w,), and at —4w, and iw, the curve
sprouts a fork. The omitted continuum is a symmetric (about 0) piece
of this curve.

If f is an extremal function for the minimum problem min [g’(2)],

g!Fz
then I'; satisfies the differential condition w'(t)’s(w(t)) > 0, where s(w)
is given by (4). Since the numerator of 8(w) is positive for —a < w < a,
the omitted continuum I is a segment [ —1{,, #,] of the real axis.
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5. A ROTATION PROBLEM

In the smaller class F'y, the problem

max Im logng)

geFy c
is meaningful (select the branch of the logarithm for which Imlogg(2)/z = 0
at 2 = 1). Suppose f is an extremal function, and set a = f(2). The ine-
quality
3
Imlogw < Imlogm
] 2

leads to the relation

Re[ag’(( i(1—a?) i —d )+0(9,)]<0.

1—atwp)(L—wg) (o —wp)(1—wp)

By Schiffer’s lemma, the continuum I, satisfies the differential con-
dition w’(t)? x s(w(t)) > 0, where
2a3—1— |af* +(2a2 — 1 — |a|*) w?

$00) = o (1 —atet) (P — o)

The local behavior of this differential condition is easy to describe
(see [4], Chapter III). We have computed the direction field for a? = 1/2,
and the results are shown in Fig. 1.

A

Fig. 1 Fig. 2

The omitted continuum for the associated minimum problem is a por-
tion of the orthogonal trajectory through the origin.
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6. ANOTHER ROTATION PROBLEM

Another way of measuring the rotation at a point 2z is to regard
Imlogg’'(2). In the class F3, we can choose the branch of the logarithm
for which Imlogg’(1) = 0, and the problem is meaningful. Suppose f
is an extremal function for the problem

maxImlogyg’(3),
geFy

and set a = f(z). Comparison of f(2) and V¥(f(2)) leads to the relation
. 1—3a?+a2wi+a*wi . 3a?wi—wi—a?—at

Re|ap?| — g — 1 2 2

(1 —a?wg)®(1 —wp) (@® —wp)*(1 —wy)

Henoe I satisties the differential condition w’(t)2s(w(?)) > 0, where

) +0(e°)] <o.

ay + a, w? +a, w +a,wt
(1 —w?) (1 —aw?)?(a® —w?)? ’

ay = a?(1+2a2—3|al*),
a; =1+4a*+]a®*—a2(5 +|al*).

s(w) =1

This differential condition is more complicated than the one in Sec-
tion 5. To allow comparison, we have computed the direction field, again
for a? = 1/2 (see Fig. 2).

If a = /V3, then a, = 0, and the origin is a zero of order 2 of the
quadratic differential. For all other values of a, the origin is a regular
point. A computation shows that for all values of a, trajectories near w = a
and w = — a are asymptotically logarithmie spirals ([4], p. 32, Theorem 3.4).

Remark. We have attempted to find the extrema for the curvature
of the image of a circle |2| = r by functions in F,. But the resulting differ-
ential condition is not noticeably simpler than the differential condition
for the whole class F, (the main difficulty is that too many parameters
remain in the differential equation).
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