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1. In [3] Palais and Stewart have shown that a smooth manifold
M is a nilmanifold of class <2 if and only if M is a total space of a prin-
cipal T"-bundle over torus 7% for some natural n and k. Their proof was
geometrical in character and, apparently to avoid technical difficulties,
they restricted one essential step in the argument to dimension » =1 only.

In this paper we shall give another and complete proof of a somewhat
more general result: a CW-complex M is homeomorphic to a nilmanifold of
class <2 if and only if M is a total space of a principal T"-bundle over torus
T* for some n and k. Our methods, which are those of algebraic topology,
allow to obtain also some results on the fundamental group of M.

The argument runs roughly as follows. Given a principal T"-bundle
& =(M,p, T"), we define, using only the characteristic class of &, a Lie
algebra L. and a Lie group @, for which L, is the Lie algebra. Next we
distinguish in @, a certain discrete subgroup D and define a manifold
X = @,/D, thus having #,(X) = D. In a natural way X becomes the total
space of a certain bundle n = (X, ¢, T%). Main result of this paper states
that £ and # are isomorphie to each other (thus yielding to M the structure
of a nilmanifold). In particular, n,(M) = =,(X) = D which gives a method
for calculating a fundamental group of a total space of a principal T™-
bundle over T*. As it turns out, this group is always a nilpotent, torsion-
-free group of class < 2.

Notions and notation used in this paper come from [1], [2], [5]
and [6].

2. First step consists in the following. Given a principal 7T™-bundle
& = (M, p,T*), we define a real (k- n)-dimensional Lie algebra L, (in
fact, it is even a covariant functor).

The universal coefficient theorem and additivity of tensor product
imply the following isomorphisms:

(1) HYT*, Zz") = H(T", 2)® 2" = H(T", 2)® ... @ H*(T*, Z).

n times
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Thus the characteristic class ¢(&) of the bundle ¢ can be written as
the sequence c!(&), ¢2(£), ..., c"(&) of elements of the group H?(T*, Z).

To choose a basis in H*(T*, Z) recall [5] that the cohomology algebra
H*(T*, Z) of the torus T* is the exterior algebra generated by the group
H(T*, Z). Therefore, if #,, #,, ..., #; is a basis of the group H'(T*, Z),
then the set {#; A #;};; will be a basis of H*(T*,Z) and

P(&) = Yt n #;,

i<j

where c¢fje Z for p =1, 2,

To defme the Lie a,lgebra. Le take the following collection of numbers
b%,, where 1 < p, r, 8 < k+n (they will play a role of structural constants
of L,):

0 if either r =s or 1<p<korr>kFkor s>k,
(2) b2 ={et7* if p>kand 1<r<s<k,
—cP7F it p>kand 1<s<r<k.

' Since bf,b;, = 0 for all s, ¢, j, m, p, this collection satisfies the
condition-

+
(3) ): b2 b2, + b2, b%, 4 b2,bS,) = 0.

Take a basis e,, €,, ..., €,,, in a (k4 n)-dimensional real linear space
V and for z,ye V define
k+n

[w,y] = 2 w%bﬁ 'Y

i,5,p=1

where =, Zg, ..., %y, a0d Y1, Y2, ...y Yr,n are coordinates of x and v,
respectively. The rule [, ]: V x V-V is obviously bilinear, skew-sym-
metric by (2), and satisfies the Jacobi condition by (3) (cf. [4], p. 385).
Hence the space V with the commutator [, ] is a Lie algebra.

It is not difficult to see that starting with another basis in H'(T%, Z
we get an isomorphic Lie algebra. Hence this algebra is defined (up to
isomorphism) uniquely, we denote it by L,.

LEMMA 1. L, is a nilpotent Lie algebra of class < 2.
Proof. Let

k+n

i ' :
x =2m}e,- for ©+ =1,2,3
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be any elements of V. Then

k+n k+n
1 3 1 3 3 1
[#, [&*, 2°]] =[w, Z wfm,b}‘;ep] = kaﬁw,b}'}[w,ep]
i l,p=1 Fl,p=1
k+n k+n k+n k+n k+n
3 1 1,.2,3 1 _
= Z sz'mlbfl 2 T bp € =Z 2 ijlwm(z bf;nbgp)eq_oy
JLp=1 m,q=1 g=1 j,l,m=1 p=1

because b7, 0%, =0 for p =1,2,...,k+n.

3. Now we proceed from the Lie algebra L, to the Lie group G,
for which L, is the Lie algebra. To do it, define in V a new operation X
by the formula

Xy =x+y+i[z,y] for z,yeV.

LeMMA 2. The group G, 8 a nilpotent, torsion-free Lie group of class < 2.

In fact, in virtue of the Campbell-Hausdorff formula we infer that V,
whith the operation X, is a nilpotent group for which L, is the Lie algebra.
By Lemma 1, it is a nilpotent Lie group of class < 2. And if xe G;, then
the mapping

R—>G:: t—>ix
is a 1-parameter subgroup of G,. Hence G, is torsion-free.

4. To construct a manifold X, consider mappings
yi: R—>@Qg: t—te; for i =1,2,...,k+n,

where R is the reals. They define 1-parameter groups in G, and collection
Y1y Vay -y Yiern Of these groups clearly generates G,.

In G, we now take the subgroup .D generated by the elements e, ¢,, ...
«+vy €1n- Since the structural constants b, of L, are integers, D is a dis-
crete subgroup of G, and so the coset space G;/D = X is a compact nil-
manifold [2]. As is known [5], D is the fundamental group of X, n,(X) = D.

LeEMMA 3. Let A be a 1-conmected, nilpotent Lie group of class 2 and
let I' be its uniform subgroup. If A"y = A is a 1-comnected closed central
subgroup of N such that the commutator group A of N is contained in
N1, then the milmanifold A" |I" is a principal T"-space and the coset space
(N |T)|T™ is the torus T*, where n = dim 4", and k = dim 4 |A4,.

Proof. Since 4, is a central subgroup of 4" and #* < A,, the group
G = I'-#,is a normal subgroup of # and 4" |G = T*, where k = dim 4" |4,
(see [2]). Again, by [2], I' is a normal subgroup of G and G/I" = T™", where
n = dim A47,.

Since the group G acts smoothly on the manifold A" /I" by the right
translations with I" as an isotropy subgroup, the quotient group G/I' = T



214 T. JAKUBOWSKI

acts smoothly and freely on the manifold A4"/I'. And since T™ is a compact
Lie group, A°/I" is a principal T"-space by the Gleason theorem.
In view of the communitativity of the diagram

QN ——— N[Ny ——— (N[N ) (G| AN )

} 1 )
(4) G — > & T*
J Y \

GII ——— I, —— (¥ [D)[(GT)

we infer that the coset space (A°/I')/(G/I) is equal to 4 |G = T*.

5. Let G’ be a subgroup of G, generated by the subgroups ¥,y Yx12s ---
eevy Ykrn- BY virtue of Lemma 3, since G’ is a center subgroup of G, and
G < @', X is a principal T™-space. Thus we can take the unique principal
T™-bundle » = (X, ¢, T*), where ¢: X—T* is a canonical mapping.

By (4) we get the commutative diagram

GE_‘P——-> .Rk

® : j l

X-—q——>Tk

We shall show that # is isomorphic to & whence it will follow, in
particular, that the total spaces, X of » and M of &, are homeomorphic.

THEOREM. The principal T"-bundles & = (M, p, T*) and n = (X, q, T
are isomorphic.

Proof. To construct an isomorphism of n and & it is sufficient to
define a homeomorphism h: T*—T* such that the characteristic class
¢(&) of the bundle £ and the characteristic class c(h'(n)) of the bundle
k'(n) are identical ([1] and [5]).

Let us calculate the characteristic class of 7.

Let I" be the r-dimensional cube and

2 I'>RF: (b, ...4t)— thole)+ ... +t9(e)

be mappings defined for 1<+, <%,<...<4% <k Denote by o; .
the image of the interior of I" by the composition »p; ; and put o,
= ¢(0). Consider the cell complex K, r-cells of which are o; ., with
the characteristic mappings »p;, ;. Let K! be the 1-skeleton of K.

Define a mapping
y: K'>X: vp(t) — o(te;),
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where »p;(t)e 0;. The mapping x is continuous, because yvg;(0) = o(0)
= o(e;) = yvp;(1), and it is a cross-section of the bundle %|zx1 by (5).
The mapping

e I-X

is a loop at the point ¢(0) and its homotopy class {yve;} is e;¢ D. Since the
bundle of coefficients 7 (z,(7")) is a product-bundle (cf. [6]) and the inclu-
sion map ¢: T"—>X induces a monomorphism of the fundamental
groups, t¢yu: 7 (IT") - n,(X), we may calculate the obstruction cocycle
¢(x)e Z*(T*, Z*) to extending y over K® as follows (here o denotes the
juxtaposition of loops):
’5#(@(%)’ G'ij>) = {yvpy; | 0I%}

= {(xv®:)o (xv@5)0 (aves) ™o (xve)) "}

= {xvei} X {xve;} X {xvei} ™" % {yre)}

= (e;% ;)% (e ' % ;)

= (e;+¢;+1[e; 6,1) X (—e;—e; + 3 [e;, €])

k+n n
— » _— D
= 2 blie, = Zcijekﬂ,.
p=k+1 p=1

Let 4,, 65, ..., 6, be cocycles of Z'(K,Z) such that

0 1 ifi=j,
g =
B 0 if i # j.

Take €;,,y--+y 61 a8 a bagis of =,(T") < D. Then

c(x) = Zc"(x)ekHD, where c?(y) = 20551 NG
p=1

i<j
Since the group B*(K, Z) of 2-coboundaries of K is trivial, we have

H*(T*,Z) = Z*(K, Z) and ¢(n) = ¢(x)-
Since &, ..., 8, is a basis of H'(T*, Z), the mapping

A: H(T*, Z) > H\T*, Z): 8, #;, i=1,...,k,

is an isomorphism. There exists a homeomorphism h: T*— T* such that
A is the induced homomorphism 2* and A = h*. Principal T™-bundles
n and h'(n) are isomorphic (cf. [1]). And since

(K (n) = B*(e"(n)) = A2A (D) B A &)= D cEA(8) AA(9))
1<j i<j

= M B A Hy =" (§)

i<j
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and, by (1), ¢(&) = ¢(h'(n)), the principal T™-bundles & and » are isomorphic
(cf. [1] and [5]).

COROLLARY 1. The spaces M and X are homeomorphic.

COROLLARY 2. The fundamental group n,(M) of the space M 1is iso-
morphic to D.

Indeed, the spaces M and X are homeomorphic by Corollary 1, and
80 7, (M) = m,(X) = D. '

COROLLARY 3. The fundamental group of a total space of a principal
T"-bundle over torus is a nilpotent, torsion-free group of class < 2. It is
abelian if and only if the bundle is trivial.

In fact, =;(M) = D by Corollary 2, and since D is a subgroup of
G., we infer by Lemma 2 that D must be nilpotent, torsion-free, of class
< 2. And the bundle ¢ is trivial iff its characteristic class is zero iff the
Lie algebra L, is abelian iff the group G,, and thus the group D, is abelian
(one implication of the last equivalence is obvious, another follows by
the definition of D (cf. [2], Lemma 5)).

By Lemma 3 and Corollary 1, we have

COROLLARY 4. A compact CW-complex M is homeomorphic to a nil-
manifold of class < 2 (i.e., to a coset space of a 1-connected, nilpotent Lie
group of class < 2) if and only if M is a total space of a principal T"-bundle
over torus T* for some n and k.

6. Consider principal T"-bundles over 2-torus 7?. The 2-cohomology
group H*(T?, Z) of T? is isomorphic to Z. If & = (M, p, T?) is the principal
T'-bundle, then its characteristic class (Chern class) will be ks, A 5#,.
The Lie algebra L. is given by [e,, 5] = [e;, €3] = 0, [€y, €,] = —[e,, €,]
= kea.

If N is the group of nilpotent 3-matrices, i. e.,

1 ¢ 2
N=3l0 1 vy |:2,y,2¢ R,
0 0 1
then the mapping
1 o 2 +1
v 2™
p: G,—N: xe, +ye, +2e; ~
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is an isomorphism. In fact, it is obviously homeomorphism and so it
remains to show that it is also a homomorphism. We have

p((@ey + yes +265) X (0" €3+ €3+ 2" ¢5)) .
= p((@+a)er+ (Y +y)eat (2 +2 + 3k (ay’ —a'y))ey)

B ’ +Z' ’ 1 ’ '-
1 z+2 % + oy +—2—(my+wy)
- y+y'
'1 z 1 1 o z’+1m, h
T %W T T
1o 1 Y 0 1 y'
[0 0 1 0 0 1 _

= p(@e, +ye. +2e5)p(2' e, +y e, +2'¢5).

It is easy to see that the image of the group D under this isomorphism
is the group of the matrices

1 a

Me=11o0 1
loo

I wish to thank P:ofessor Roman Duda for his kind help in prepara-
tion of this paper.

ta,b,ceZ

T IS

REFERENCES

[1] D. Husemoller, Fibre bundles, New York 1966.

[2] A. 1. ManbueB, O6 0dnom KEaacce 00HopoOnblz npocmparncms, aBecTua AxrageMun
Hayx CCCP 13 (1949), p. 9-32.

[3] R.S. Palais and T. E. Stewart, Torus bundles over torus, Proceedings of the
American Mathematical Society 12 (1961), p. 26-29.

[4] JI.C. IlonTpuarun, Henpepusuvie epynne, MockBa 1973.

[6] E. H. Spanier, Algebraic topology, New York 1966.

[6] N. Steenrod, The topology of fibre bundles, Princeton 1951.

Regu par la Rédaction le 26. 10. 1973



