ON THE FORM OF PRINCIPAL TORUS-BUNDLES OVER TORUSES

 \mathbf{BY}

T. JAKUBOWSKI (WROCŁAW)

1. In [3] Palais and Stewart have shown that a smooth manifold M is a nilmanifold of class ≤ 2 if and only if M is a total space of a principal T^n -bundle over torus T^k for some natural n and k. Their proof was geometrical in character and, apparently to avoid technical difficulties, they restricted one essential step in the argument to dimension n=1 only.

In this paper we shall give another and complete proof of a somewhat more general result: a CW-complex M is homeomorphic to a nilmanifold of class ≤ 2 if and only if M is a total space of a principal T^n -bundle over torus T^k for some n and k. Our methods, which are those of algebraic topology, allow to obtain also some results on the fundamental group of M.

The argument runs roughly as follows. Given a principal T^n -bundle $\xi = (M, p, T^k)$, we define, using only the characteristic class of ξ , a Lie algebra L_{ξ} and a Lie group G_{ξ} for which L_{ξ} is the Lie algebra. Next we distinguish in G_{ξ} a certain discrete subgroup D and define a manifold $X = G_{\xi}/D$, thus having $\pi_1(X) = D$. In a natural way X becomes the total space of a certain bundle $\eta = (X, q, T^k)$. Main result of this paper states that ξ and η are isomorphic to each other (thus yielding to M the structure of a nilmanifold). In particular, $\pi_1(M) = \pi_1(X) = D$ which gives a method for calculating a fundamental group of a total space of a principal T^n -bundle over T^k . As it turns out, this group is always a nilpotent, torsion-free group of class ≤ 2 .

Notions and notation used in this paper come from [1], [2], [5] and [6].

2. First step consists in the following. Given a principal T^n -bundle $\xi = (M, p, T^k)$, we define a real (k+n)-dimensional Lie algebra L_{ξ} (in fact, it is even a covariant functor).

The universal coefficient theorem and additivity of tensor product imply the following isomorphisms:

$$(1) \qquad H^2(T^k,Z^n) = H^2(T^k,Z) \otimes Z^n = \underbrace{H^2(T^k,Z) \oplus \ldots \oplus H^2(T^k,Z)}_{n \text{ times}}.$$

Thus the characteristic class $c(\xi)$ of the bundle ξ can be written as the sequence $c^1(\xi), c^2(\xi), \ldots, c^n(\xi)$ of elements of the group $H^2(T^k, Z)$.

To choose a basis in $H^2(T^k, Z)$ recall [5] that the cohomology algebra $H^*(T^k, Z)$ of the torus T^k is the exterior algebra generated by the group $H^1(T^k, Z)$. Therefore, if $\mathscr{H}_1, \mathscr{H}_2, \ldots, \mathscr{H}_k$ is a basis of the group $H^1(T^k, Z)$, then the set $\{\mathscr{H}_i \wedge \mathscr{H}_i\}_{i < j}$ will be a basis of $H^2(T^k, Z)$ and

$$c^p(\xi) = \sum_{i < j} c^p_{ij} \mathscr{H}_i \wedge \mathscr{H}_j,$$

where $c_{ij}^p \in \mathbb{Z}$ for p = 1, 2, ..., n.

To define the Lie algebra L_{ξ} take the following collection of numbers b_{rs}^{p} , where $1 \leq p$, r, $s \leq k+n$ (they will play a role of structural constants of L_{ξ}):

$$(2) \qquad b_{rs}^{p} = \begin{cases} 0 & \text{if either } r = s \text{ or } 1 \leqslant p \leqslant k \text{ or } r > k \text{ or } s > k, \\ c_{rs}^{p-k} & \text{if } p > k \text{ and } 1 \leqslant r < s \leqslant k, \\ -c_{sr}^{p-k} & \text{if } p > k \text{ and } 1 \leqslant s < r \leqslant k. \end{cases}$$

Since $b_{is}^{p}b_{jm}^{s}=0$ for all s, i, j, m, p, this collection satisfies the condition

(3)
$$\sum_{s=1}^{k+n} (b_{rs}^p b_{qu}^s + b_{qs}^p b_{ur}^s + b_{us}^p b_{rq}^s) = 0.$$

Take a basis $e_1, e_2, \ldots, e_{k+n}$ in a (k+n)-dimensional real linear space V and for $x, y \in V$ define

$$[x, y] = \sum_{i,j,p=1}^{k+n} x_i y_j b_{ij}^p e_p,$$

where $x_1, x_2, ..., x_{k+n}$ and $y_1, y_2, ..., y_{k+n}$ are coordinates of x and y, respectively. The rule $[,]: V \times V \to V$ is obviously bilinear, skew-symmetric by (2), and satisfies the Jacobi condition by (3) (cf. [4], p. 385). Hence the space V with the commutator [,] is a Lie algebra.

It is not difficult to see that starting with another basis in $H^1(T^k, Z)$ we get an isomorphic Lie algebra. Hence this algebra is defined (up to isomorphism) uniquely, we denote it by L_z .

Lemma 1. L_{ξ} is a nilpotent Lie algebra of class $\leqslant 2$.

Proof. Let

$$x^{i} = \sum_{j=1}^{k+n} x_{j}^{i} e_{j}$$
 for $i = 1, 2, 3$

be any elements of V. Then

$$\begin{split} \left[x^{1},\left[x^{2},x^{3}\right]\right] &= \left[x^{1},\sum_{j,l,p=1}^{k+n}x_{j}^{2}x_{l}^{3}b_{jl}^{p}e_{p}\right] = \sum_{j,l,p=1}^{k+n}x_{j}^{2}x_{l}^{3}b_{jl}^{p}\left[x^{1},e_{p}\right] \\ &= \sum_{j,l,p=1}^{k+n}x_{j}^{2}x_{l}^{3}b_{jl}^{p}\sum_{m,q=1}^{k+n}x_{m}^{1}b_{mp}^{q}e_{q} = \sum_{q=1}^{k+n}\sum_{j,l,m=1}^{k+n}x_{j}^{1}x_{l}^{2}x_{m}^{3}\left(\sum_{p=1}^{k+n}b_{lm}^{p}b_{jp}^{q}\right)e_{q} = 0\,, \end{split}$$

because $b_{lm}^{p}b_{jp}^{q}=0$ for p=1,2,...,k+n.

3. Now we proceed from the Lie algebra L_{ξ} to the Lie group G_{ξ} , for which L_{ξ} is the Lie algebra. To do it, define in V a new operation \mathbf{x} by the formula

$$x \times y = x + y + \frac{1}{2}[x, y]$$
 for $x, y \in V$.

LEMMA 2. The group G_{ξ} is a nilpotent, torsion-free Lie group of class $\leqslant 2$.

In fact, in virtue of the Campbell-Hausdorff formula we infer that V, whith the operation \mathbf{x} , is a nilpotent group for which L_{ξ} is the Lie algebra. By Lemma 1, it is a nilpotent Lie group of class ≤ 2 . And if $x \in G_{\xi}$, then the mapping

$$R \to G_{\xi} \colon t \to tx$$

is a 1-parameter subgroup of G_{ξ} . Hence G_{ξ} is torsion-free.

4. To construct a manifold X, consider mappings

$$\gamma_i$$
: $R \rightarrow G_{\xi}$: $t \rightarrow te_i$ for $i = 1, 2, ..., k+n$,

where R is the reals. They define 1-parameter groups in G_{ξ} and collection $\gamma_1, \gamma_2, \ldots, \gamma_{k+n}$ of these groups clearly generates G_{ξ} .

In G_{ξ} we now take the subgroup D generated by the elements $e_1, e_2, \ldots, e_{k+n}$. Since the structural constants b_{rs}^p of L_{ξ} are integers, D is a discrete subgroup of G_{ξ} and so the coset space $G_{\xi}/D = X$ is a compact nilmanifold [2]. As is known [5], D is the fundamental group of X, $\pi_1(X) = D$.

LEMMA 3. Let \mathcal{N} be a 1-connected, nilpotent Lie group of class 2 and let Γ be its uniform subgroup. If $\mathcal{N}_1 \subset \mathcal{N}$ is a 1-connected closed central subgroup of \mathcal{N} such that the commutator group \mathcal{N}^2 of \mathcal{N} is contained in \mathcal{N}_1 , then the nilmanifold \mathcal{N}/Γ is a principal T^n -space and the coset space $(\mathcal{N}/\Gamma)/T^n$ is the torus T^k , where $n=\dim \mathcal{N}_1$ and $k=\dim \mathcal{N}/\mathcal{N}_1$.

Proof. Since \mathcal{N}_1 is a central subgroup of \mathcal{N} and $\mathcal{N}^2 \subset \mathcal{N}_1$, the group $G = \Gamma \cdot \mathcal{N}_1$ is a normal subgroup of \mathcal{N} and $\mathcal{N}/G = T^k$, where $k = \dim \mathcal{N}/\mathcal{N}_1$ (see [2]). Again, by [2], Γ is a normal subgroup of G and $G/\Gamma = T^n$, where $n = \dim \mathcal{N}_1$.

Since the group G acts smoothly on the manifold \mathcal{N}/Γ by the right translations with Γ as an isotropy subgroup, the quotient group $G/\Gamma = T^n$

acts smoothly and freely on the manifold \mathcal{N}/Γ . And since T^n is a compact Lie group, \mathcal{N}/Γ is a principal T^n -space by the Gleason theorem.

In view of the communitativity of the diagram

we infer that the coset space $(\mathcal{N}/\Gamma)/(G/\Gamma)$ is equal to $\mathcal{N}/G = T^k$.

5. Let G' be a subgroup of G_{ξ} generated by the subgroups $\gamma_{k+1}, \gamma_{k+2}, \ldots, \gamma_{k+n}$. By virtue of Lemma 3, since G' is a center subgroup of G_{ξ} and $G_{\xi}^2 \subset G'$, X is a principal T^n -space. Thus we can take the unique principal T^n -bundle $\eta = (X, q, T^k)$, where $q: X \to T^k$ is a canonical mapping.

By (4) we get the commutative diagram

$$\begin{array}{cccc}
G_{\xi} & \xrightarrow{\varphi} & R^{k} \\
\downarrow & & \downarrow \\
X & \xrightarrow{q} & T^{k}
\end{array}$$

We shall show that η is isomorphic to ξ , whence it will follow, in particular, that the total spaces, X of η and M of ξ , are homeomorphic.

THEOREM. The principal T^n -bundles $\xi = (M, p, T^k)$ and $\eta = (X, q, T^k)$ are isomorphic.

Proof. To construct an isomorphism of η and ξ it is sufficient to define a homeomorphism $h: T^k \to T^k$ such that the characteristic class $c(\xi)$ of the bundle ξ and the characteristic class $c(h^!(\eta))$ of the bundle $h^!(\eta)$ are identical ([1] and [5]).

Let us calculate the characteristic class of η .

Let I^r be the r-dimensional cube and

$$\varphi_{i_1,\ldots,i_r}\colon I^r \to R^k\colon (t_1,\ldots,t_r) \to t_1 \varphi(e_{i_1}) + \ldots + t_r \varphi(e_{i_r})$$

be mappings defined for $1 \leq i_1 < i_2 < \ldots < i_r \leq k$. Denote by σ_{i_1,\ldots,i_r} the image of the interior of I^r by the composition $\nu \varphi_{i_1,\ldots,i_r}$ and put $\sigma_0 = \varrho(0)$. Consider the cell complex K, r-cells of which are σ_{i_1,\ldots,i_r} with the characteristic mappings $\nu \varphi_{i_1,\ldots,i_r}$. Let K^1 be the 1-skeleton of K. Define a mapping

$$\gamma: K^1 \rightarrow X: \nu \varphi_i(t) \rightarrow \varrho(te_i)$$

where $\nu\varphi_i(t) \in \sigma_i$. The mapping χ is continuous, because $\chi\nu\varphi_i(0) = \varrho(0) = \varrho(e_i) = \chi\nu\varphi_i(1)$, and it is a cross-section of the bundle $\eta|_{K^1}$ by (5). The mapping

$$\chi \nu \varphi_i \colon I \to X$$

is a loop at the point $\varrho(0)$ and its homotopy class $\{\chi \nu \varphi_i\}$ is $e_i \in D$. Since the bundle of coefficients $\eta(\pi_1(T^n))$ is a product-bundle (cf. [6]) and the inclusion map $i\colon T^n\to X$ induces a monomorphism of the fundamental groups, $i_{\#}\colon \pi_1(T^n)\to \pi_1(X)$, we may calculate the obstruction cocycle $c(\chi)\in Z^2(T^k,Z^n)$ to extending χ over K^2 as follows (here \circ denotes the juxtaposition of loops):

$$\begin{split} i_{\#}\big(\langle c(\chi), \, \sigma_{ij}\rangle\big) &= \{\chi v \varphi_{ij} \,|\, \partial I^2\} \\ &= \{(\chi v \varphi_i) \circ (\chi v \varphi_j) \circ (\chi v \varphi_i)^{-1} \circ (\chi v \varphi_j)^{-1}\} \\ &= \{\chi v \varphi_i\} \times \{\chi v \varphi_j\} \times \{\chi v \varphi_i\}^{-1} \times \{\chi v \varphi_j\}^{-1} \\ &= (e_i \times e_j) \times (e_i^{-1} \times e_j^{-1}) \\ &= (e_i + e_j + \frac{1}{2} [e_i, e_j]) \times (-e_i - e_j + \frac{1}{2} [e_i, e_j]) \\ &= \sum_{p=k+1}^{k+n} b_{ij}^p e_p = \sum_{p=1}^n c_{ij}^p e_{k+p}. \end{split}$$

Let $\delta_1, \delta_2, \ldots, \delta_k$ be cocycles of $Z^1(K, Z)$ such that

$$raket{\left\langle \delta_i,\,\sigma_j
ight
angle = egin{cases} 1 & ext{ if } i=j, \ 0 & ext{ if } i
eq j. \end{cases}}$$

Take e_{k+1}, \ldots, e_{k+n} as a basis of $\pi_1(T^n) \subset D$. Then

$$c(\chi) = \sum_{p=1}^n c^p(\chi) e_{k+p}, \quad ext{ where } c^p(\chi) = \sum_{i < j} c^p_{ij} \, \delta_i \wedge \delta_j.$$

Since the group $B^2(K, Z)$ of 2-coboundaries of K is trivial, we have $H^2(T^k, Z) = Z^2(K, Z)$ and $c(\eta) = c(\chi)$.

Since $\delta_1, \ldots, \delta_k$ is a basis of $H^1(T^k, Z)$, the mapping

$$A:\ H^1(T^k,Z)
ightarrow H^1(T^k,Z)\colon\ \delta_i \mapsto \mathscr{H}_i, \qquad i=1,\ldots,k,$$

is an isomorphism. There exists a homeomorphism $h: T^k \to T^k$ such that A is the induced homomorphism h^* and $A = h^*$. Principal T^n -bundles η and $h^!(\eta)$ are isomorphic (cf. [1]). And since

$$egin{aligned} c^pig(h^!(\eta)ig) &= h^*ig(c^p(\eta)ig) = arLambda^2Aig(\sum_{i< j}c^p_{ij}\,\delta_i\,\wedge\,\delta_jig), = \sum_{i< j}c^p_{ij}A\,(\delta_i)\,\wedge A\,(\delta_j) \ &= \sum_{i< j}c^p_{ij}\mathscr{H}_i\,\wedge\,\mathscr{H}_j = c^p(\xi) \end{aligned}$$

and, by (1), $c(\xi) = c(h^!(\eta))$, the principal T^n -bundles ξ and η are isomorphic (cf. [1] and [5]).

COROLLARY 1. The spaces M and X are homeomorphic.

COROLLARY 2. The fundamental group $\pi_1(M)$ of the space M is isomorphic to D.

Indeed, the spaces M and X are homeomorphic by Corollary 1, and so $\pi_1(M) = \pi_1(X) = D$.

COROLLARY 3. The fundamental group of a total space of a principal T^n -bundle over torus is a nilpotent, torsion-free group of class ≤ 2 . It is abelian if and only if the bundle is trivial.

In fact, $\pi_1(M) = D$ by Corollary 2, and since D is a subgroup of G_{ξ} , we infer by Lemma 2 that D must be nilpotent, torsion-free, of class ≤ 2 . And the bundle ξ is trivial iff its characteristic class is zero iff the Lie algebra L_{ξ} is abelian iff the group G_{ξ} , and thus the group D, is abelian (one implication of the last equivalence is obvious, another follows by the definition of D (cf. [2], Lemma 5)).

By Lemma 3 and Corollary 1, we have

COROLLARY 4. A compact CW-complex M is homeomorphic to a nilmanifold of class ≤ 2 (i. e., to a coset space of a 1-connected, nilpotent Lie group of class ≤ 2) if and only if M is a total space of a principal T^n -bundle over torus T^k for some n and k.

6. Consider principal T^1 -bundles over 2-torus T^2 . The 2-cohomology group $H^2(T^2, Z)$ of T^2 is isomorphic to Z. If $\xi = (M, p, T^2)$ is the principal T^1 -bundle, then its characteristic class (Chern class) will be $k \mathcal{H}_1 \wedge \mathcal{H}_2$. The Lie algebra L_{ξ} is given by $[e_1, e_3] = [e_2, e_3] = 0$, $[e_1, e_2] = -[e_2, e_1] = ke_3$.

If N is the group of nilpotent 3-matrices, i. e.,

$$N = \left\{ egin{bmatrix} 1 & x & z \ 0 & 1 & y \ 0 & 0 & 1 \end{bmatrix} : \, x, \, y \,, \, z \, \epsilon \, R
ight\},$$

then the mapping

$$\psi \colon G_{\xi} \! o \! N \colon xe_1 \! + \! ye_2 \! + \! ze_3 \! o \! \left[egin{array}{ccc} 1 & x & rac{z}{k} + rac{1}{2} xy \ 0 & 1 & y \ 0 & 0 & 1 \end{array}
ight]$$

is an isomorphism. In fact, it is obviously homeomorphism and so it remains to show that it is also a homomorphism. We have

$$\psi((xe_1 + ye_2 + ze_3) \times (x'e_1 + y'e_2 + z'e_3)) \\
= \psi((x+x')e_1 + (y+y')e_2 + (z+z' + \frac{1}{2}k(xy' - x'y))e_3) \\
= \begin{bmatrix} 1 & x+x' & \frac{z+z'}{k} + xy' + \frac{1}{2}(xy+x'y') \\ 0 & 1 & y+y' \\ 0 & 0 & 1 \end{bmatrix} \\
= \begin{bmatrix} 1 & x & \frac{z}{k} + \frac{1}{2}xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & x' & \frac{z'}{k} + \frac{1}{2}x'y' \\ 0 & 1 & y' \\ 0 & 0 & 1 \end{bmatrix} \\
= \psi(xe_1 + ye_2 + ze_3)\psi(x'e_1 + y'e_2 + z'e_3).$$

It is easy to see that the image of the group D under this isomorphism is the group of the matrices

$$N_k = \left\{ egin{bmatrix} 1 & a & rac{c}{k} \ 0 & 1 & b \ 0 & 0 & 1 \end{bmatrix} \colon a,b,c\,\epsilon\,Z
ight\}.$$

I wish to thank Professor Roman Duda for his kind help in preparation of this paper.

REFERENCES

- [1] D. Husemoller, Fibre bundles, New York 1966.
- [2] А. И. Мальцев, Об одном классе однородных пространств, Известия Академии Наук СССР 13 (1949), р. 9-32.
- [3] R. S. Palais and T. E. Stewart, *Torus bundles over torus*, Proceedings of the American Mathematical Society 12 (1961), p. 26-29.
- [4] Л. С. Понтриагин, Непрерывные группы, Москва 1973.
- [5] E. H. Spanier, Algebraic topology, New York 1966.
- [6] N. Steenrod, The topology of fibre bundles, Princeton 1951.

Reçu par la Rédaction le 26. 10. 1973