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1. Introduction. Certain types of affine motion generated by contra,
concurrent, special concircular, recurrent, concircular, and torse forming
vector fields in a non-Riemannian manifold of recurrent curvature were
discussed by Takano [19], [20]. Following Takano, Sinha [18], Misra [6]-
[9], Meher [5], [8], [9], and Kumar [2]-[4] discussed affine motions
generated by some of the above types of vector fields in Finsler manifolds of
recurrent curvature and some other special Finsler manifolds. These authors
obtained various results using mostly the same techniques as those adopted
by Takano. However, the problem to find the necessary and sufficient
conditions for above vector fields to generate an affine motion could not
attract these authors including Takano, and this problem thus remained
undiscussed. The present author considered this problem for first four types
of vector fields [15]. The aim of the present paper is to discuss the problem
for the remaining two types of vector fields in a general Finsler manifold.

2. Preliminaries. Let F,(F, g, G) be an n-dimensional Finsler manifold
of class at least C’ equipped with a metric function F(') satisfying the
required conditions [17], the corresponding symmetric metric tensor g and
Berwald’s connection G. The coefficients of Berwald’s connection G, denoted
by G, satisfy

Q1) (@ Gy =G, (b) Gix* =G\ (o) Gi¥ = 2G,

(!) Unless otherwise stated, all the geometric objects are supposed to be functions of the
line elements (x, X¥). The indices i, j, k, ... take positive integer values from 1 to n.
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where ¢, stands for partial differentiation with respect to x*. The partial
derivatives 0, G}, of the connection coefficients G constitute a tensor, say
Gjwn, symmetric in its lower indices, and satisfy

(2.2) ;kh X‘h = 0.
The covariant derivative of a tensor T for the connection G is given by
(2.3) B 7}i = Gy ’I}i_((l)r Ei) Gy + UGik -T Gls

where ¢, = d/éx*. The commutation formulae for the differential operators 9,
and 4, are given by

(24) (("j B — By aj) 7;: = _iikr Ty — ;kh Tjs
(2.5) (B By — By ABj) Ty = _iikr Ty — Hjyy, ’I:i—'H;k (‘1 T,

where Hj,, constitute Berwald’s curvature tensor. This tensor is skew-
symmetric in first two lower indices and positively homogeneous of degree
zero in Xs. The tensor H), appearing in (2.5) is connected with the
curvature tensor by

(2.6) (a) Hj’kh XM = H;k, (b) 5;. Hj'k = H_iikh-
The tensor Hj, is related with the deviation tensor H’ by
(2.7) (a) Hiy x* = Hi, (b) 3(d, H,—d;H)) = H’,.

The associate vector y; of x' satisfies
(2.8) (@) y; X =F% (b) 0, F? =2y,
(c) 51)’,' = Gij» (d) y: Hj'k =0

(see [13]), where g;; are components of the metric tensor g.
Let us consider an infinitesimal transformation

(2.9) X = x' +ev' (x)

generated by a vector v'(x/), ¢ being an infinitesimal constant. The Lie
derivatives of an arbitrary tensor T; and connection coefficients Gj, with
respect to the infinitesimal transformation (2.9) are given by (see [17] and

[22])

(2.10) £ =v B, T — T .0+ T} B;v"+(0, T}) B, v %,
(2.11) £GY\ = B; B V' + Hipy v + Gy, B0 3.

The operator £ commutes with the differential operators %, and ¢, according
to

(2.12) (EB.— B T = T} £G,. — T, £G (3, T}) £Gi,
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(2.13) (£6,— 0. £)Q =0,

where Q is any geometric object.
An infinitesimal transformation, say (2.9), is an affine motion if and only

if (see [17] and [22])
(2.14) £GY, = 0;

and the vector field ¢' is said to be the generator of the affine motion. A

vector field v' is said to be torse forming or concircular according as it
satisfies (see [10], [11], [16])

(2.15) BV = p v' + 06}
or
(216) ;%k Ui = W Ui+Q(si, gJJﬂk = .ﬂk Hjs

where u, and ¢ are a non-zero covariant vector field and a scalar field,
respectively. Izumi [1] proved that the vector field y, appearing in (2.16),

characterizing a concircular vector field, is in fact v, = gp V. It is easy to see
that if we take v, in place of g, then the second equation of (2.16) is

automatically satisfied. Thus a concircular vector field may be characterized
by

(2.17) BV = v v + 06k,

An affine motion is said to be torse forming or concircular according as it is
generated by a torse forming vector field or a concircular vector field,
respectively.

3. Torse forming affine motion. Let us consider an infinitesimal transform-
ation generated by a torse forming vector v' characterized by (2.15). Misra
et al. [10] proved that, for a Finsler manifold of dimension greater than two
(F,,n>?2), o is a function of x"s only and the vector p, satisfies

(3.1) ajllk = k Hj-

Transvecting (3.1) by x/ and using Euler’s theorem of homogeneous func-
tions, we get

3.2) te = Gy 1,
where ;1d=e[ w, X*. Differentiating (2.15) covariantly with respect to x/ we get
(33) B; BV = (B; e+ 1 ) V' + o1y 5+ 0; 0%,

where g; = ;0. If the torse forming vector v' generates an affine motion, we
have (2.14). Expanding the left-hand side of (2.14) with the help of (2.11) and
(3.3) we get
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(34’ (ﬂj M+ “_[ ﬂk) Ui + O Uy 6;+ Q_] 6;‘ + H:njk v+ G.‘;'kr .”s Xt = 0,

which, in view of (2.15) and (2.2), gives

Transvecting (3.5) by x* and using (2.2) and (2.6a), we have

(3.6) (Bjn+ ppj) v+ oud+ o X' + Hypjv™ = 0.

Transvecting (3.6) by y; and using (2.8a) and (2.8d), we get
(A 1+ pp) yi V' + opy;+0; F* = 0,

which implies

(3.7 A u+pp; = —(eny;+e; F)/o,

where 0% y. 1. From (3.6) and (3.7) we get

(3.8) —(ouy;+ 0 FA)V'/o+ oudi+ 0; X' + H,,;v™ = 0.

Transvecting (3.8) by x’ and using (2.7a) and (2.8a), we have

(3.9) H,, o™ = (F?v' — oX') (ou+ 0; X))/ 0.

Thus we see that conditions (3.7) and (3.9) necessarily hold if the torse
fotming vector v generates an affine motion. Conversely, suppose that a
torse forming vector ¢, characterized by (2.15), satisfies (3.7) and (3.9). In
view of (2.11) and (2.15), the Lie derivative of connection coefficients Gj, with
respect to an infinitesimal transformation generated by the vector v’ is given
by

(3.10) £G% = (B th+ 1 ) V' + oy 05+ 0; 8} + Hipji V™ + pGiy, V"
Transvecting (3.10) by x/ x* and using (2.1b), (2.1c), (2.2), (2.6a), and (2.7a), we
get

(3.11) 2£G' = X/ (A pu+ pp) v' +(op+ 0; X)) X' + Hip o™,

which, in view of (3.7) and (3.9), gives £G' = 0. Differentiating £G' = 0
partially with respect to X/ and using the commutation formula exhibited by
(2.13), we get £G = 0. By further partial differentiation with respect to x* and
repeating the same process we get (2.14), and hence the transformation
considered is an affine motion. This leads to

TueoreM 3.1. Conditions (3.7) and (3.9) together are necessary and
sufficient for a torse forming vector v' characterized by (2.15) to generate an
affine motion.

Let an affine motion be generated by a torse forming vector v* charac-
terized by (2.15). Operating the equation (2.15) by £, using the commutation
formula exhibited by (2.12), and then using (2.14), we get

£y, v' + £00% = 0,
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which, after transvection by x*, gives
(3.12) £ur' + £ox' = 0.

In his paper [14] the present author proved that if a non-zero vector v'(x’)
satisfies the equation av'+bx' =0, then a =b = 0. In view of this lemma,
(3.12) implies

(3.13) (a) £u=0, (b) £0=0.

Differentiating (3.13a) partially with respect to x* and using the commutation

formula (2.13), we get
(3.13¢) fu, = 0.

Thus, we have

THEOREM 3.2. If a torse forming vector v' characterized by (2.15) generates
an affine motion, then the Lie derivatives of the vector p, and the scalar ¢
vanish.

It is well known that the curvature tensor HY, is Lie invariant under an
affine motion, ie.,

(3.14) £H'y, = 0.
Transvecting (3.14) by x*x" and using (2.6a) and (2.7a), we get
(3.15) £H = 0.

By Theorems 3.1 and 3.2 we have (3.9) and (3.13). Operating the equation
(3.9) by £ and using (3.15), we get

(3.16)  @(£F*v' —£ox') (ou+0; X’)+ @ (F* v/ — ox') (£ + £0; X)) —
—(F*v' —pxX)(ou+0; X)) £ = 0.

Differentiating (3.13b) covariantly with respect to x* and using (2.12), we get
£o; = £4;0 = #;£0 = 0. Using (3.13¢) and £9; =0 in (3.16), we obtain

(3.17) (on+0; X)(p£F* —F* £¢) = 0,
which implies at least one of the following equalities:

(3.18) (a) ou+o; %) =0, (b) £F? =%pF2.

If (3:18a) holds, then the partial differentiation of (3.18a) with respect to x*
gives
(3.19) o+ = 0.

Differentiating (3.19) covariantly with respect to x’ and using (3.19), we have

(3.20) —oHj i+ oB;m+ Ao =0.
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Taking the skew-symmetric part of (3.20), using the commutation formula
exhibited by (2.5) and using the independence of ¢ from xs, we conclude
that

(3.21) By = By Kjs

since ¢ # 0. Transvecting (3.7) by X/ and using (3.18a), we get

(3.22) x/ (B u+ upj) = 0.

Differentiating (3.22) partially with respect to x* and using (3.21), we obtain
(3.23) B u+up = 0.

From (3.7) and (3.23) we find

(3.29) opuy;+0;F* =0.

Transvecting (3.24) by v/ and using v/ ¢; = v/ #;0 = £0 = 0 (due to (3.13b)),
we have either ¢ =0 or u =0, since y;v/ # 0. Thus we get a contradiction.
Hence (3.18a) does not hold. Therefore (3.18b) necessarily holds. Calculating
the Lie derivative of ¢ with the help of (2.10) and substituting it in (3.18b),

we get
£F? = (Q+£02)F2,
@

where v? = v; v/, which, in view of (2.10), (2.15) and (2.8b), gives
(3.25) (uv? — o) F? = 2uq?.

uv* —o¢ cannot be zero, for uv?—op = 0 in (3.25) implies u =0 or ¢ = 0.
Putting 4 =0 in formula (3.2) we have y, =0, which contradicts the fact
that g, is non-zero. Again, ¢ = 0 and pv? —g¢p = 0 give uv® = 0. Since u # 0,
we have v?2 =0. This means v' is a zero vector, which is not the case.
Dividing (3.25) by uv?—o¢, we get

2
(3.26) Fro M0
Ho=—00
Thus we have
THeOREM 3.3. If a torse forming vector field v' characterized by (2.15)
generates an affine motion in a Finsler manifold, then the square of the metric
Junction of the manifold is given by (3.26).
Now we shall point out some conditions which whenever satisfied by a
torse forming vector, it cannot generate an affine motion. These conditions
are given in the following

THEOREM 34. A torse forming vector v' characterized by (2.15) and
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satisfying one of the following conditions cannot generate an affine motion in a
Finsler manifold:

(i) Hjpv" =0, (i) 4;w+u;um = 0.

Proof. It is established that for a vector v'(x’) the conditions (i) and

Wi V" = 0 are equivalent [15]. Hence (i) implies Hi; v™ =0, which after
transvection by x’/ x* gives H.,v™ = 0. If the torse forming vector v' generates
an affine motion, we have (3.9), which, in view of H: v™ = 0, gives at least

one of the conditions: (3.18a) and
(3.27) FXvi—px = 0.

We have already seen in the proof of Theorem 3.3 that (3.18a) does not hold.
By Lemma 5.1 in [14], condition (3.27) implies v' = 0. Thus we get a
contradiction.

Transvecting the condition (ii) by x* and using it in (3.7), we get (3.24),
which after transvection by v/ implies either ¢ = 0 or u = 0. Thus we get a
contradiction.

We have already seen that a recurrent Finsler manifold does not admit
any torse forming vector field [16]. Therefore, the question for existence of
an affine motion generated by a torse forming vector field in a recurrent
Finsler manifold does not arise.

4. Concircular affine motion. Let us consider a concircular vector field
characterized by (2.17). Adopting the procedure of Section 3, we may easily
prove the following:

If a concircular vector field v' characterized by (2.17) generates an affine

motion, we have
£
@.1) (a) £0, =0, (b) £F? = TZ:FZ.

These equations are analogues of (3.13c) and (3.18b), respectively.

In this case ¢ = y;v' = v, x* = u. Transvecting (4.1a) by x*, we get £¢
= 0. Consequently, (4.1b) reduces to £F* = 0. Expanding £F? = 0 with the
help of (2.10) and using (2.8) and the fact that the metric function F is a
covariant constant, we get

4.2) ©2+oF? = 0.

Différentia,ting (4.2) partially with respect to x* and using the fact that g is a
function of x”s only, we have

4.3) 2ucp+el F* =0.
In this case, equation (3.2) reduces to & u = v,. Using this and (2.8b), we get

44) uv, +oy, = 0.
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Transvecting (4.4) by g™ (the associate of g;;), we have

(4.5)

uv' +ox' = 0.

In view of Lemma 5.1 in [14], equation (4.5) gives ¢ = 0, a contradiction.
Hence there exists no concircular vector field which generates an affine
motion in a Finsler manifold. Thus we have

THeoReM 4.1. A concircular vector field characterized by (2.17) cannot

generate an dffine motion in a Finsler manifold.
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