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1. Introduction. Let G be an L.C.A. group and let @ be its dual
group. Let M (@) be the measure algebra on @ and let L'(G) be the group
algebra on @G. By [12], there exist a compact topological semigroup 8
and an isomorphism 6 of M (@) into M(S) such that:

(i) 6(M(@)) is weak®-dense in M(8);

(ii) §, the set of all non-zero continuous semicharacters on 8, sepa-
rates the points of S; .

(i) M(@)> u — [ fdbu (f € 8) is a non-zero complex homomorphism
of M(Q); o

(iv) for a non-zero complex homomorphism F of M (@), there is an
I e § such that

F(u) = ffdﬂp for every uec M(G).
S

We can consider that § is the maximal ideal space of M (@) and
8§>@ ={fe§; Ifl =1 on 8}.
The Gelfand transform of x € M(@) is given by
w(f) = [fadu  (feB).

S

For u € M (@), we put
L'(u) = {Ae M(@); A is absolutely continuous with respect to u (A<u)}.

A closed subspace (ideal, subalgebra) I of M (@) is said to be an L-sub-
space (L-ideal, L-subalgebra) if L'(u) = I for every wel. An L-ideal
(L-subalgebra) N is called prime if

Nt = {ue M(@); p is singular with respect to N (x| N)}
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is an L-subalgebra (L-ideal). We denote by M (@) the set of all measures

whose Fourier-Stieltjes transforms vanish at infinity of @. Then M,(Q)
is an L-ideal, but M,(@) is not prime. For a subset N of M (@), we put

Z(N) = {fe8; a(f) =0 for every ueN}.
For a subset E of @, we put
I(B) = {ue M(@); 4 =0 on E};

then I(E) is a closed ideal of M(@). A subset E of 8 is called an ideal
of 8 if fE < FE for every f e 8. By [11], if N is an L-subspace, then Z(N)
is a closed ideal of 8, and if F is an ideal of 8, then I(F) is an L-ideal.
We note that if N is an L-ideal, then N < I(Z(N))and Z(N) = Z (I(Z (N )))

For a closed ideal N of M(G), we put N = {ueN; L'(u) < N}.

Then X is the largest L-ideal of M (@) which is contained in N. Since L' (&)
is the smallest L-ideal of M (@), we have

LI'@)cN<cN and Z(N)>ZWN) if ¥ #{0}.

There are many non-L, closed ideals N of M(Q) such that Z(N)
= Z(N) (see [7] and [8]).

In Section 2, we prove

THEOREM A. There exists u € M(Q@) such that

(a) Z(I(u)) i8 a closed ideal of 8,

(b) Z(E(u)) 2 2(I(w), .
where I(u) is the closed ideal of M (G) generated by p, and I(u) = (I(pu))".

In the previous paper [8], the author showed that there exist L-ideals
I, and I, of M(@) which satisfy

(v) I, § I, and Z(I,) = Z(I,),

(vi) there are no L-ideals I such that I, § I & I,.

On the other hand, there is a closed ideal I of M (@), I < L'(@), which
satisfies

(c) for a closed ideal I,, Z(I,) = Z(I) implies I, = I.

Let us consider an analogous condition:

(d) for an L-ideal I, of M (@), Z(I,) = Z(I) implies I, = I.

It is natural to ask the following two questions:

Is there a proper closed ideal I of M(G) such that I ¢ L'(Q) and I
satisfies (c)? (P 1184)

Is there a non-zero proper L-ideal I of M (@) which satisfies (d)%
(P 1185)

We cannot answer these questions for L.C.A. groups, but in Section 3
we prove

THEOREM B. Let G be a non-metrizable compact Abelian group. Then
there ewists a proper L-ideal I of M (@) whioh satisfies (d).
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In Section 4 we study M,(G)-type L-ideals. For F c é, we put
Mg = {ue M(@); L'(n) |g = Co(B)},

where Cy(E) is the set of all continuous functions on ¥ which vanish at
infinity of E. Then we have My(G) = MY < M(G). If E = @, then M,
= M,(@). And if E is a compact subset of é, then MY = M(@). It is easy
to show that MY is an L-ideal of M(Q). It is a question whether there
exists an F satisfying

(e) My(@) &£ Mg £ M(@).

THEOREM C. I f G i8 @ compact metrizable Abelian group, then (e) holds
if and only zf E is an infinite subset of @ and satisfies

(f) @ # U {r:+(EV —E)} for each finite subset {yy, ..., v,} of Q.

In such a case, MY is not a prime L-ideal (cf. [5]).

2. Proof of Theorem A. First, we assume that @ is an infinite compact

metrizable Abelian group. We put G = {¥1; Y25 +..}. For a subset E of G
and a positive integer », we put

E(0) = {0}
and

En) = {6+ ... +0,2,5 6; = +1,2;,€eE (t =1,...,n) and
@, # a; if 1 # j}.

A subset D of @ is said to be dissociate if it does not contain 0 and if

the equality
e+ ... +ep®, =0, where ¢;,€{—2, —1,0,1,2}, x,€D,
implies the equations
ELy = €%y = ... = Eq®y,, = 0.
Let D’ be an infinite dissociate subset of G ([9], p. 21). Let D c D’

be such that D and D'\ D are infinite sets. Then D is also a dissociate set.
It is well known that there is a Riesz product 4 € M (@) (4 > 0) such that

) (— if y e D(n),
Ay) =1 ) .
if y e G\[D], where [D] = U D(n).

By the deep work of Brown [2] (Theorem 1), such a measure 4is a tame
measure, that is, for each f e 8 there exist y € @ and a complex number a
such that |a) <1, f = ay a.e. 404, and there exists an f e § such that
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0 < |fl <1 a.e. d0A. We note that
N .

(1) U (y:+[D]) § G for every positive integer N,
i=1

since D’ is an infinite dissociate set. Using the above-mentioned facts
and notation, we construct a measure x4 which satisfies (a) and (b).

Let f € 8 be such that 0 < f =a <1 a.e.dabi. Then 64 is concentrated
on E = {xe8; f(x) = a}. We put E(e,, 6,) = {x€8; ¢; < f(x) < ¢y} for
positive numbers ¢, and ¢, (¢, < ¢5).

LemMA 1. If I is a olosed ideal of M(G) and Z(I)nG # @, then
L'(u) ¢ I for every uel.

The lemma follows easily from [11].

LeEMMA 2. If v € I(A) and 0 < ¢, < oq, then »' € I(4), where v' 13 the
part of v such that 0(v’) is conoentrated on E(o,, ¢;).

Proof. Since » € I(1), there exists a sequence {»,}3., of M (@) such
that Axv, —» (» - o0). We put », =2+, where 6 is concentrated
on E(c,a?, 0,a”!) and 6% is concentrated on S\E(e,a’, ¢,a7?). Since
6(v’+2) is concentrated on S\ E(e,, ¢,), we have »2°+1 | +'. Then »%#1 — ',
so that we have » e I(A).

LEMMA 3. We put
I, = I({UI(yaa™),

n=l

where I(M), M c M (@), is the closed ideal of M (G) generated by M. Then
(2) Z(I,) 18 a closed ideal of ﬁ,

3) 2Z(I,) 2 Z(L,).

Proof. Let g € Z(1,). Suppose that g # 0 a.e. dfA. Since 4 is a tame
measure, there are y e @ and ¢ # 0 such that g = ¢y a.e. d6A. Then

(vad™) () = Ay —7a)* # 0
for some positive integer ». This contradicts g € Z(Z,). Hence g € Z(I,)

implies ¢ = 0 a.e. d6A. On the other hand, if g € 8§ with ¢ = 0 a.e. d04,
then g e Z(1,). Thus (2) is proved.
Next we show (3). We put

M(f) = {u e M(G); 6u is concentrated on J(f)},
where J(f) = {z €8; f(#) = 0}. Then we have Z(M(f) ¢ Z(I,). If we
show that M(f)::fo, then Z(I,) 2 Z(I,). Suppose that M(f) $ I,.

There exists a v eI, (v #0) such that 6» is concentrated on {z e S;
0 < f(®) <1} and L'(») « I,. We may assume that 6» is concentrated
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on E(e,0,) for some ¢;,¢, 0<e¢, <cy<a. Let ¢eL'(y). Since I,
coincides with the linear span of

{Zﬂ'I(Ykﬂ‘); n=1,2, }7

ke=1

there is a sequence {g,}r_, of M(G) such that

o, € ZI(y,‘).") and o,—0 (n—> o).
k=1

We put
n
o, =Zo,h,,, where o, ; € I(y,4*),
=1

and

’ 44
Op,p = an,k+an,k7

where 0q) ; is concentrated on E(c,,0,) and 6g, , is concentrated on
S\E(cy,0q) for 1<k<n(n =1,2,...). Then, by Lemma 2, we have
i € I(yA%). Since 02* is concentrated on {w € 8; f(x) = a*}, we conclude
that if a*<e¢,, then o, = 0. We choose a natural integer ¢ > 0 such
that a*<e¢, and a*~ !> 0,. Then

n 8
o, =20;,,,‘621(yk}.") and o, —>o.

k=1 k=1

Hence

o ez(i‘z(ykzk)) and L'(v) I(i‘l(yk}.")).
k=1

k=1
Since, on account of (1),

énz (1 "Z_;I(ykl"))) =&nN 2w = ) (6\0+ (D))
= &\ ,,C,Jl (vs+1D)) # O,
we have

o) ¢ I Zs;'I(yk)."))

k=1

by Lemma 1. This is a contradiction, so that fo < M(f), and the proof
1s completed.

ProPOSITION 1. If G i8 an infinite compact metrizable Abelian group,
then there exists a u € M(G) which satisfies (a) and (b).
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Proof. We put

[ ] oo
B = 2%7”2"’ where a, >0 (n =1,2,...) and 2a,,< 0o,

ne=l A=l

Then I(u) < I, and Z(1,) = Z(I(,u)), since u(y) # 0 for every y €@.
This shows (a). Since

Z(f(p)) ) Z(jo) 2 Z(1,),

we have Z(I(u)) 3 Z(I(p))

Let A be a tame measure on the real line R which is constructed by
Brown [1], p. 503. Then we have j.(y) >0forye R = R and there exists
an fe 8 such that J = a a.e. d0A, where a i8 a positive number, 0 < a < 1.
Let R® be the Bohr compactification of R; then there is a continuous
isomorphism B of R into R® ([10], p. 30). Fix @, € RE\B(R). Then there
are neighborhoods {U,}2., of z, in R? such that

(N U)NB(R) =@ and U,>U,, (n=1,2..).
In fact, let E, (n =1,2,...) be compact subsets of R such that

UE,=R and E,cH, ®=12..).

n=1

Let U, be a neighborhood of z, in R® such that g~'(U,)NE, = 9.
We can take {U,}s., such that U, o> U,,,. Then

(ﬁ Un)f\ﬂ(.l%) = 0.

Ne=l

We can choose a sequence {u,}u., of M,(R) such that |u,| < 10,
Ba(y) = 0 for every y € R®, u, = 0 on a neighborhood of z, € RE\S(R)
and pu,(y) > 0 for every y € RE\U,,, (see [10], p. 49), where M (R)
is the set of all discrete measures on R. We put

I, = I(Q I(pge ).

We note that
R N
RnZ(U I(p,+2™) # O
n=1

for every positive integer N and

Rz I(pei®) = 0.

Nn=]
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LeEMMA 4. I, satisfies (2) and (3).
The proof proceeds like that of Lemma 3.
PROPOSITION 2. There exvists a u € M(R) which satisfies (a) and (b).

This follows from Lemma 4 by an argument analogous to that used
in the proof of Proposition 1.

It remains to consider the general case.

LeEMMA 5. Let H c G, where H i an open subgroup. If there s a
lo € M (H) which satisfies (a) and (b), then there exists a u € M(G) which
satisfies (a) and (Db).

Proof. We can consider that M(H) «c M(G) and u,€ M(G). Let
f € 8, the maximal ideal space of M (@), be such that f # 0 a.e. d0A for
some 4 € I(p,). Then f +~ 0 a.e. @0u,. Since f = f M(x) 18 & non-zero complex
homomorphism of M (H), we have j,(f) = 0. This implies that Z(I 78]
is a closed ideal of 8. Let §, be the maximal ideal space of M (H) and let
Il(yn) be the closed ideal of M(H) generated by u,. Since Z(I,(us))
2 Z(I,(uo) in 8,, there is a geS, such that g € Z(I, (o)) \Z(I, (150))-
Since H is an open subgroup, there is a g € 8 such that A(g9) = A (g) for
every A€ M(H) ([3], Lemma 2) and ¢(§) = 0 for every o € I(u,). Then
we have § € Z((uo)). Since g ¢ Z(I,(1,)), we obtain § ¢ Z(I(u,)). Hence
Z(I (o)) 2 Z(I(10))-

LEMMA 6. Let H, and H, be non-discrete L.C.A. groups. If there is a
o € M (H,) which satisfies (a) and (b), then there exists a u € M(G) which
satisfies (a) and (b), where G = H, X H,.

Proof. We put 4 = puo X é,, where 4, is a unit point mass at 0 € H,.
We change the topology of G so that H, >~ H, x{0} is an open subgroup.
We denote its L.C.A. group by Gz, (see [10], p. 64). By Lemma 5, for
I,(u) being the closed ideal in M (GH ) generated by u, Z(I4(p)) is a closed
ideal of 8, and Z(I,(,u)) 2 Z(I,(u)), where 8, is the maximal 1dea.l space of
M(Gg,). For g e 8 such that g # 0 a.e. dOu, there exists a g, € S, such that
g # 0 a.e. doy and A(g) = Mgy) for every 4 € M(Gy). Since i(g) = js(gy)
# 0, we have g ¢ Z(I(u)). Consequently, Z(I(p)) is a closed ideal of 8.
Let & eZ(L(p ))\Z(I,(s)). We put h(o) =h(s’) for every oe M(G),
where ¢’ is the part of o which is contained in M (GH ). Then we have
h € Z(I(4))\2Z(I (1)), which completes the proof.

LeMMA 7. Let G be an infinite compact Abelian group. Then there
erisls & uc M(G) which satisfies (a) and (b).
Proof. By [10], p. 45, there is an infinite compact metrizable sub-

group G, of G. By Proposition 1, we can prove Lemma 7 in the same way
as Lemma 6.
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Proof of Theorem A. Since there exists an open subgroup R" x K
of @G, where K is a compact group, the proof is completed by Proposi-
tions 1, 2 and Lemmas 5-7.

3. Proof of Theorem B. In this section we assume that @G is a

non-metrizable compact Abelian group, that is, @ is an uncountable
discrete group. We put

I ={ueM(@); u(y) =0 for every y cG except a countable subset}.

Since yu € I for every y €@ and u €I, we infer that I is an L-ideal
of M(@). We show that I has property (d). Let I' = {@,},.4 be the family

of all countable subgroups of G. We put H, = G,l, the annihilator of G
in G; then H, is a compact subgroup of G.

LEMMA 8. I coincides with the L-ideal 1, of M (@) generated by {mg_;
a € A}, where mg_ is the normalized Haar measure on H,.

Proof. For a € 4, we have mgy_ €I, so that I contains I,. Let 4 € I.
Since {y € G; ; #(y) # 0} is a countable set, there exists a € A4 such that

G,> {y €G; ji(y) # 0},

Consequently, My ap = ph and u€I,. Thus we have I = I,.

Proof of Theorem B. We show that I satisfies (d). Let I, be an
L-ideal of M (@) such that Z(I,) = Z(I). For ae 4, M(Ggz ) is a prime
L-subalgebra. For u € M (@), we denote by u, the part of g which is con-
tained in M(Gg ). We put I, = {u.; u € I}. Then I, is a non-zero L-ideal
of M(@g ) and Z(1,) = Z(I,,) holds in the maximal ideal space of M (G ).
Since my_e€ I,, we have Z(I,) néH = @. This shows that L'(Gg ) < I,,
so that mg_e I,,. Thus we have I < I, by Lemma 8. Next suppose that
I 3 I,. Then there exists a 4 € I, such that u ¢ I. Since {y € G, p(y) # 0}
i8 uncounta.ble, there exists an &> 0 such that E = {y eG, ()] = €}
is uncountable. Let cl(E) be the closure in 8 ; then cl(F) is a compact suba
set of cl(é). We note that cl(é,) is an open compact subset of cl(é). If

l(B) « U cl(d,),

aed

then

cl(B) c Ucl(G,,‘) for some a; €4 (1 =1,...,n)
t=1
and there is a G, € I' such that
Ec U G c G.

fa=1
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This contradicts that E is uncountable.
Thus there exists an f, such that

fo€ ABNU cl(G,) and |a(fo)l > e.

Since 1(f,) = 0 for every 4 € I, we have Z(I,) § Z(I). This is a contra-
diction which completes the proof.

It is not known whether Theorem B is true without the condition
of compact metrizability. In this connection, we show

PRrROPOSITION 3. Let H be an open subgroup of G. Suppose that there
18 an L-ideal I, of M(H) such that

(4) for an L-ideal I, of M (H), if Z(I,) = Z(I1,) holds in the mazimal
tdeal space of M (H), then I, = I,.

Then there i3 an L-ideal I which satisfies (4) (replace H and I, by @
and I, respectively).

Proof. Let I be an L-ideal of M (G) generated by I,. Let I, be an
L-ideal of M (G)such that Z(I,) = Z(I). We note that I is the closed linear
span of {3,«I,; x € G}. We put I, = I, nM(H); then I, is an L-ideal of
M (H). Since Z(I,) = Z(I,), we have I, = I,. Since I, is the closed linear
span of {8,+I,; ® € G}, we have I, = I.

4. Proof of Theorem C. In this section we assume that @ is a compact
metrizable Abelian group, that is, G is a countable discrete group. For
E c @, we put

My = {ue M(@); L'(p) g = Co(E)}.

Since yu € MY, for every y € G and s € M%, M% is an L-ideal of M(G)
and My(@) ¢ MY c M(G). A subset E of G is called symmetric if E = —E.
To prove Theorem C, we show some lemmas.

LEMMA 9. Let E be a symmetric subset of G which satisfies (f), and let
F be a finite subset of @. Then there evists an » € G\E such that

{o}u{s +F} c G\E.

Proof. Suppose that {x +F}NE +# @ for every z= € G\E. Then we
have

G = EuyLél‘{(E+y)u(E—y)}.

Since F is a finite set, £ does not have property (f). This is a contra-
diction.
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LEMMA 10. If E is a symmetric subset of @ and E satisfies (f), then
there is an infinile dissociale subset D of G such that

{8) (y+E)nD(n) is a finite set for every y €@ and every non-negative
tnieger n.

Proof. Since @ is a countable set, we put G = {71) Y2y .-} We set
{6) E,=F and Ey=FEU{E+y}v...U{ELy,}

Then E, is a symmetric subset and has property (f) for ¥ =0,1, ...
‘We will construct 2, € é\E,, and 4, c é\E,, (n =0,1,...) by induction.
We take z, eé\E’o and put 4, = {+x,}. For a positive integer %, by
Lemma 9 there exists an #; € é\E,, such that

k-1 .
(7 Ay = {3 }V{ L2+ 1‘U A} < G\E,.
=0

We may assume 2,,,, ... are all djstmct We put X {%oy @1, ...}. Then

there exist an infinite dissociate subset D of G and Yo € @ such that yo+Dc X
(see [9], p. 21). We put D = {yo, 9, ...} and yo+¥y; =% (k = 0,1, ...).

We show that D satisties (5). Let y,, € @ and let » be a non-negative integer.
Suppose that (y,+ E)ND(n) is an infinite set. Then K,ND(n) is an infi-
nite set. If y e E,nD(n) and y = 0y, + - +4,y;,, then

y = 512_.,1-{- eee +6nzj”—-(61+ see +6n)yo (6‘ = 1 or —1 ('i = 1’ ceey "‘))-

Since {(6,+ ... +8,)yo is a finite set, there are #,,..., 7, (9, =1
or —1) such that {E,—(n,+ ... +,)y.}nX(n) is an infinite set. By the
definition of E,, there exists a positive integer p, such that

{Bp—(m1+ ... +0a)70} < Ep,f
Hence B, NX(n) is an infinite set. If

EponX(fn)am = &% + ... +e® (6, = £1, 1, <3< ... <1,),

then « ¢ E; by (7). Thus we have %, < p, by (6). Consequently, E, nX(n)
i8 a finite set. This is a contradiction. Thus D has the desired property.

LEMMA 11. Let E be a symmetric subset of G. Then E satisfies (f) if
and only if there ewvists a mon-zero measure u € M(Q) suoch that u ¢ My(G)
and L'(p) |g < Co(B).

Proof. Suppose that E has property (f). By Lemma 10, there exists
an infinite dissociate subset D of G which satisfies (5). Let u be a positive
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measure on G such that

(B it y e D(m),
0 if ye@\[D].

To prove that L'(u) |z<Co(E), it is sufficient to show that
(yw)" |z € Og(E) for every y € @. Since

{z e B; |(yp) (@) = (1)}
={wek; lulx—y) >3} = (E—y)n(kL_JoD(k)Hy

By) = {

is a finite set by (5), we have (yu) |z € Co(H).
On the other hand, suppose that there is a non-zero measure 4 € M (@)
such that u ¢ My(@) and L'(u)” |g< Co(E), and assume that E does not

satisfy (f). Then there exists a set {y;,..., ¥,} = G such that

G = I:LJI (B + ).

Since I'(u) |g = Co(E), We have ulg,, €Co(E+y) (k=1,...,n)
and u € Cy(G). This contradicts u ¢ M,(@). Thus the proof is completed.

Proof of Theorem C. We put F = Fu—H. By Lemma 11, it is
sufficient to show that if there is a u ¢ M,(G) such that L'(u) |z
< Co(E), then L'(u) |p = Co(F). Let u ¢ M,(G) be such that L'(u) |z
< Co(E). For A € L'(u), we put A = A, +44,, where 4, and 4, are real meas-
ures. Since 4;(y) = 1;( —y) and 4; € L' (4), we have ;|_z € Co( —E) (j = 1, 2).
Thus we have I,IF € Co(F) and 1|y € Co(F) for every A € L'(u). Following
Graham [5], p. 568-669, we can show that there are u,v_| My such that
uwv € My(@). This proves that MY is not prime.

For f e §, we put

J(f) = {w e 8; f(z) = 0}

and

I(f) = {u € M(@); 6u is concentrated on J(f)}.
We note that M,(@) = ({I(f);fe cl(f})\é}. It is easy to show that

My = NHI(S); f € cl(B)\G}.

COROLLARY 1. Let G be am infinite compact metrizable Abelian group.
If E i3 an infinite symmetric subset of G and E satisfies (f), then

My(@) § N{I(f); fecl(B)\G}.



300 K. 1IZUCHI

A subset E of G is called Sidon if for every bounded function f on ¥

there is a measure u € M (@) such that s|; = f. If E is a Sidon subset of G,
then U —F is a symmetric Sidon set [4] and satisfies (f). Then we have

COROLLARY 2. If E is am infinite Sidon subset of @, then
M S MLE MG and  M(6) S NI);f e d(BNG.

The author would like to express his thanks to the referee for his
kind advice to make the paper readable.
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