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1. Introduction. In [4] Kirk asked the following question (P 706): If f is
an isometry of a G-space M on itself and if some subsequence of |f"(z)},
ze M, is bounded, then is the sequence {f"(z)} bounded?

The purpose of this paper is to give a positive answer to this question.
Furthermore, we shall show that in a more general situation than that of the
above question, it follows necessarily that the sequence {f"(z)} is bounded.

In Section 2 we give some more notation and discuss elementary
properties of some classes of spaces, needed in the next sections. The
principal tool used to prove the main results is Lemma 3.1 (Section 3). This
lemma gives a sufficient condition for a noncontractive mapping f (see
Section 4 for the definition) to have a bounded sequence of iterates of a
point. The main results of the present paper, concerning noncontractive
mappings and nonexpansive mappings, are proved in Sections 4 and S.

Throughout this paper, for a nonempty subset A of a metric space M
and for number n > 0, we put

0(z, A) =inf {g(z, a): ac A} for every ze M,
K(4,n) ={zeM: o(z, ) <n},
6(A) = sup {g(a, b): a, be A},
and cl A denotes the closure of 4. If A = {z}, then we let K(z, ) = K (4, 7).

2. Preliminary concepts and remarks.

2.1. Definition. Let M be a metric space and let z, be a point
of M. Then '

(a) M is said to have property P(n, ) at z, (where n, 6 > 0) if there
exists a finite set F = M such that K(z,, n) = K(F, d);

(b) M is said to have property Q () at z, (Where & > 0) if there exists an
unbounded sequence {n,} of positive numbers such that for every n the space
M has property P(n,, on,) at z,.
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The following remark is immediate:

2.2. Remark. If a metric space M has property P(n, 6) at z,, then for
each ze K (z,y, n) and for all n,, §; such that

O0<n, <n—g(z9,2z2) and 6,26

M has property P(n,, d,) at z.

23. LEMMA. Let A be a subset a metric space M. If F — M is a finite set
such that A < K(F, 8), then there exists a finite set F, < A such that
A c K(F,, 2)).

Proof. We can assume that A # @ and, replacing F by a suitable
subset, that F = {x,, ..., x,} is such that o(x;, ) <d,i=1, ..., k. Thus, for
every i=1,...,k there exists q,eA with g(q;, x;) <. Hence the set
F, =ay, ..., a} is the required one.

2.4. PrOPOSITION. Let M be a metric space and let zoe M.

(@) If M has property P(n,d) (respectively, Q(J)) at z,, then each
subspace of M containing z, has property P(n, 20) (respectively, Q(23)) at z,.

(b) If M has property Q(d) at z,, then for every 6, > 6 the space M has
property Q(d,) at every point.

Consequently, if M has property Q(d) at z,, then for every 6, > 6 each
subspace of M has property Q(20,) at each of its points.

Proof. (a) follows from Lemma 2.3.

(b) Let {n,! be a sequence of positive numbers such that lim #, = o
and such that, for every n, M has property P(n,, on,) at z,. If ze M and
0, > 9, then there exists an integer no such that

Na>0(20,2) and o, < 8, (n,—e (20, 2))

for every n > no. Setting #y = 1,,+,—0(20, 2), it follows by Remark 2.2 that
for each n the space M has property P(n¥, 6,n¥) at z. Since the sequence
¥} is unbounded, this shows that M has property Q(d,) at z. Thus the
proof is complete.

25. Definition (cf. [1]). A metric space M is said to be finitely totally
bounded (respectively, finitely compact) if each bounded subset of M is totally
bounded (respectively, if each bounded and closed subset of M is compact).

2.6. Remarks. (a) For a metric space M and a number ¢ > 0, we
consider the following conditions:
(1)) For each n > 0 the space M has property P(n, €¢) at every point.

(2, For each bounded set A — M there exists a finite set F = A4 such that
A c K(F, ¢).

(3). There exists a set F < M such that (i) K(F, ¢) = M, and (ii) each
bounded subset of F is finite.
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(4), There exists a countable decomposition of M, M = A, U A, U ...,
such that (i) 6(A4,) <e¢ for every n, and (ii)) for each bounded set
A c M there exists n >0 with A c 4y,u ... UA,.

(5), For each bounded infinite set A = M there exist two distinct points
a, be A with ¢(a, b) <e.

Then we have the following relations:

1° If M satisfies (1), then it satisfies (2),,.
2° If M satisfies (2),, then it satisfies (3),.
3° If M satisfies (3),, then it satisfies (4),,.
4° If M satisfies (4),, then it satisfies (5),.
5° If M satisfies (5),, then it satisfies (1),.

Indeed, 1° follows from Lemma 2.3.
2° Fix zoe M and a number r > 0. Setting

B, =K(zo,r) and B, = K(zo, nr)\K (24, (n—1)r)

for each integer n > 2, we see that condition (2), implies that for each n > 1
there exists a finite set F, < B, with B, < K(F,,¢). The set F= |J F,

a=1

satisfies (i) and (ii) of (3),.

3° Consider a set F c M satisfying (i) and (ii) of (3),. Then F is
countable. Setting F = {x,, x;, ...}, we infer that the sets A4, = K(x,, ¢),
n=0,1, ..., satisfy (i) of (4),,. In order to verify (ii), let A = M be bounded.
Then so is B=K(A,¢); hence n=max {i>0: x;eB} is finite and
Ac Ayu ... UA,, as desired.

4° is immediate.

5° Let zoeM and let >0 be given. Consider a maximal set
F < K(z, n) such that g(x, y) = ¢ for every two distinct points x, ye F. Then
K(zo, n) = K(F, ¢) and, since F is bounded, condition (5), implies that F is
finite. This means that M has property P(n, ¢) at z,, as desired.

(b) Let M be a metric space. If M satisfies one of the conditions (1),~(5),
for some ¢ > 0, then for every 6 > 0 it has property Q(J) at every point.

Indeed, it follows from (1), that for every 6 > 0 and each n > ¢/6 the
space M has property P(n, dn) at every point. Hence the assertion follows
from the relations 1-5°.

(c) Using the relations 1°-5°, we infer that for a metric space M the
following statements are equivalent:

(i) M is finitely totally bounded.

(i) M satisties one of the conditions (1),H5), for every & > 0.

(i) Every bounded sequence of points of M contains a Cauchy sub-
sequence.
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(iv) The completion of M is finitely compact.

(d) From Remarks (b) and (c) we infer the following:

(i) If a metric space M is finitely compact, then it is finitely totally
bounded.

(ii) If a metric space M is finitely totally bounded, then for every 6 > 0
it has property Q(J) at every point.

3. Basic lemma.

3.1. LeMMA. Let A = {xq, X;, ...} be a sequence of points of a metric
space M such that

(@) e(Xn+15 Xm+1) = @(Xps Xp) for all n, m2=0.

Assume that there exists a number n > 0 such that
(b), the set {i > 0: o(x;, xo) <n} is infinite;

(c), the subspace A = M has property P(n, n/2) at x,.
Then A is bounded.

Proof. By (c),, there exists a finite sequence i, i,, ..., i, of nonnegative
integers such that

©) K(xo, A< U K(xy n/2).

It follows from (b), and (6) that for some sei,, i, ..., i, the set
{i 2 0: o(x;, x;) <n/2} is infinite. However, by (a), o(x;-,, Xo) < 0(x;, x,) for
each i > s, and we infer that

7 the set |i > 0: o(x;, xo) < n/2}. is infinite.

Now, by (7), we may choose an integer i, such that

8) io =max |1,i,, iy, ..., 0},
&) 0(x;qs Xo) < 1/2.

Put

io
T = .91 K(xj, '])

J
In order to prove that 4 is bounded, it suffices to show that A = T.
Let n > 0 be given. If n < iy, then obviously x,e T. Assume that n > i,.
By (7), there is ny > n such that g(x,,, xo) < /2. Thus, by (9), ¢(x,,s X;)) <1;
hence by (a) we get

no?

Q(Xny-js Xig-j) S € (Xng, Xig) < for 0<j <.
Therefore, we have

(10) X;€ T for no—io S] < ny
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and  x, -;,€K(xo, )" A. It follows from (6) that there exists

s€ iy, iz, ..., i,} such that g(x,. _; , X,) < n/2. Hence, by (a), we get
0~ !0

(11) Q(xno—l'o-j’ xs-j) < r’/z for 0 <j < min ‘{S, no-io}-

If s > ny—i,, then, by (10), (11), (8), and the definition of T, we have
x;eT for 0<j< n,.

If s <ng—igy, then setting n; = no—io—s, by (8) we have 0 <n, < n,,
and using (10), (11), and the definition of T we infer that x,eT for
ny <j < no and that g(x,,, xo) < n/2.

Therefore, replacing n, by n; and continuing in this fashion, we finally
obtain x;eT for each j, 0 <j < ny. In particular, x,e T. This shows that
A c T and the proof of Lemma 3.1 is complete.

3.2. Remark. In the preceding lemma, condition (b), may be replaced
by each of the following:

(b)y for some n > 0 the set {i > 0: ¢(x;, x,) <n} is infinite;

(b)x* the set |j—i: g(x;, x;) <n, is infinite.

Indeed, it is clear that (b), implies (b)Y and (b); implies (b)¥*. However,
by (a), e(x;-;, Xo) < @(x;, x;) for every i <j; hence (b), follows from (b)}*.

4. Conditions under which noncontractive mappings have bounded orbits.

4.1. Definition. A mapping f (not necessarily continuous) of a metric
space M into itself is said to be noncontractive if ¢(f(x), f(y)) = e(x, y) for
all x, yeM.

From Lemma 3.1 we have the following

4.2. THEOREM. Let f be a noncontractive mapping of a metric space M into
itself and let z, be a given point of M. Assume that there exists a number n > 0
such that

(@) {f"(zo)} contains a subsequence which lies in K(z,, n);

(b) M has property P (n, n/4) at z,.

Then the sequence |f"(zq)} is bounded.

Proof. Let A = |xq, X;, ...}, where x, =f"(zo) for n=0, 1, ... It suf-
fices to verify that A satisfies conditions (a), (b),, (c), of Lemma 3.1.

Condition (a) of Lemma 3.1 is a consequence of the fact that f is
noncontractive; (b), follows from (a) above; and (c), follows from (b) above
and (a) of Proposition 2.4. Thus the proof is complete.

The following theorem is an immediate consequence of Theorem 4.2 and
Definition 2.1.

4.3. THEOREM. Let f be a noncontractive mapping of a metric space M into
itself and let z, be a given point of M. Assume that

(@) {f"(zo)} contains a bounded subsequence;

(b) M has property Q(1/4) at z,.



224 A. CALKA

Then the sequence |f"(z,), is bounded.
In view of the discussion in Section 2, we have

4.4. CorOLLARY. Theorem 4.3 remains true if (b) is replaced by any of the
following conditions:

(by) there is 6, 0 < & < 1/4, such that M has property Q(d) at some point;

(b,) there is € > 0 such that M satisfies one of the conditions (1)~5),;

(bs) M is finitely totally bounded,

(by) M is finitely compact.

Proof. It follows from Remarks 2.6 that (b, implies (b;,_,) for
i=2,3, 4. By (b) of Proposition 2.4, condition (b,) implies (b) of Theorem
4.3. This completes the proof.

Since each isometry is a noncontractive mapping, we have the following
particular case of Theorem 4.3.

4.5. CoROLLARY. Let f be an isometry of a finitely compact metric space M
into itself such that for some zoe M the sequence |f"(z,)} contains a bounded
subsequence. Then for every ze M the sequence |f"(z,)) is bounded.

4.6. Remark. Since every G-space is finitely compact (cf. [1]), Corollary
4.5 yields the positive answer to Kirk’s question.

S. Conditions under which nonexpansive mappings have bounded orbits.

5.1. Definition. A mapping f of a metric space M into itself is said to
be nonexpansive if o(f(x), f(y)) <e(x,y) for all x, ye M.

5.2. Definition. Let f be a mapping of a metric space M into itself.
Then the set M/ is defined by

M = U {w;(x): xeM},
where
we(x) = () cl [ f'(x): i >nj,
n=0

and M’ is called the f-closure of M (cf. [2] and [3)).

The following facts are proved in [2]. We include the proofs for the sake
of completeness.

53. LEMMA. Let f be a nonexpansive mapping of a metric space M into
itself. If zoe M’, then

(@) zoew,(zo);
(b) f maps the set |f"(zo)} isometrically into itself.

Proof. (a) Let ¢ > 0 be given. Since z,€ M’, there exists x € M such that
zg€ws(x). Hence there exist integers n, m such that 0 < n <m, o(f"(x), zo)
<¢/2, and ¢(f™(x), zo) < &/2. Since f™ " is also nonexpansive, we obtain

e(f™ "(2o), 20) < Q(f"’"'(zo),f"'(x))+Q(f”'(x), Zo)
< 0(zo, (X)) +¢/2 <.
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Since ¢ > 0 was chosen arbitrary, this shows that z,ew,(z).

(b) It follows from (a) above that a sequence {n;) (1 <n, <n, < ...) of
integers exists so that

llm fni(ZO) = 2p.
Since f is nonexpansive, for all x, ye|f"(z,)] we have

e(f (), £ ) < e(f (%), f () < e(x, ),
and (since f is continuous)

lim o(f"(x), /" () = e(x, y).

Hence o(f(x), f(») = e(x, y) for all x, ye{f"(zo)}.
This completes the proof.

As a consequence of Lemmas 3.1 and 5.3 we obtain the following

5.4. THEOREM. Let f be a nonexpansive mapping of a metric space M into
itself. If there exist a point zoe M’/ and a number n > 0 such that M has
property P(n, n/4) at z,, then for every ze M the sequence | f"(z)} is bounded.

Proof. Let A = {xq, X4, ...}, Wwhere x, =f"(zo) for n =0, 1, ... In order
to prove that for every ze M the sequence {f"(z)} is bounded it is sufficient
to show that A satisfies conditions (a), (b),, and (c), of Lemma 3.1.

Conditions (a) and (b), of Lemma 3.1 follow from (b) and (a) of Lemma
5.3, respectively. Condition (c), is a consequence of (a) of Proposition 2.4 and
the fact that M has property P(n, n/4) at z,. Thus the proof is complete.

Observe that every nonexpansive mapping of a metric space M can be
extended to a nonexpansive mapping of the completion M of M. Thus we
get the following

5.5. CorOLLARY. Let f be a nonexpansive mapping of a metric space M
into itself. Assume that for some zoeM the sequence |f"(z,)} contains
a Cauchy subsequence and that

(a) for each ze M there is a number n, >0 such that M has property

P(n., n./4) at z.
Then for every ze M the sequence |f"(z)} is bounded.

The following result is an immediate consequence of Corollary 5.5 and
Remark (c) of Section 2.6.

5.6. THEOREM. Let f be a nonexpansive mapping of a finitély totally
bounded metric space M into itself. If for some zoe M the sequence |f"(z,)}

contains a bounded subsequence, then for every ze M the sequence |f"(z) is
bounded.

6. Final remarks. 1. It follows from Lemma 3.1 that the assumptions
made in many of the results of Sections 4 and 5 for the space M may be
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replaced by the corresponding (weaker) assumptions for the subspace
1 f™(z0)}. For example, in Theorem 4.3 it suffices to assume that | f"(z,)] has
property Q(1/2) at z,, in Theorem 5.4 it suffices to assume that there is
a number n >0 such that [f"(z,)} has property P(n, n/2) at zy, and in
Theorem 5.6 it suffices to assume that | f"(z,)} is finitely totally bounded.

2. It is interesting to note that condition (a) of Corollary 5.5 follows
from any of the following conditions:

(a;) there exist numbers 1 and é such that 0 < é < n/4 and that M has
property P(n, ) at every point;

(a,) there is a number ¢ > 0 such that M satisfies one of the conditions
(DeA3)e;

(az) there is a number 6 > 0 such that 0 <é <1/4 and that M has
property Q(d) at some point.

3. There exists an isometry f of a separable metric space M such that for
some zo€ M the sequence | f"(z,)] is unbounded and contains a convergent
subsequence. The following example is due to Edelstein (see [3], The-
orem 2.1).

Example. Let f: I, —1,, where I, is the space of all sequences |x,! of
complex numbers with

b A p o]
Y IxJ<oc and |xll=(3 1x?)"
n=1

n=1
be defined by
f(:xn} = {yn}9

where y, = exp |2mi/n!} (x,—1)+1 for every n=1, 2, ... Then f is an iso-
metry. If

1 X
=1 -

then || f™(0)|| — oo (as k — o), while if n, = k!, then [|f™(0))| — O (as k — o).
It should be noted that (by a theorem of Riesz) a Banach space B
satisfies the following condition:
there exist numbers n and 6 such that 0 <d <n and that B has
property P(n, ) at some point if and only if B is finite dimensional.
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