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1. Introduction. The classical problem of interpolation can be
stated for universal algebras as follows: Let A = (4, 2> be a universal
algebra and f: A¥—~ A a given k-ary function. Is there, for any finite
subset N < A¥, a k-ary algebraic function g on A such that f|N = g|N?t

Algebras for which the problem of interpolation is solvable for any
function f: A*¥ — 4 (k € N, arbitrary) are often called locally functionally
complete (see, e.g., Pixley [13]).

Recently Gumm has proved a theorem having the following conse-
quence, noted by Pixley ([6], Theorem 6.1):

Let A = (4, 2> be a simple algebra in a congruence permutable
variety; then either U is locally functionally complete or % is affine with
respect to an abelian group {4, 4).

This generalizes a result of McKenzie [11] to the infinite case.

A next logical step in the development of this theory is to study
interpolation properties of single algebras and algebras in congruence
permutable varieties (or, more generally, in congruence permutable local
varieties) with special attention to the ranks of the functions and the size
of the sets on which they may be interpolated. The present paper* initiates
this study. .

Affine algebras and their structure have been studied in some detail by
McKenzie ([11] and [12]) and Gumm [6]. Questions of interpolation
have already been considered by a number of authors (see, for example,
Baker and Pixley [1], Hule and Nobauer [8] or Kaiser [10]).

For concepts used in this paper without definition see Gratzer [5].

2. Definitions and results. Let %A = (4, 2> be a universal algebra
and % a positive integer. We say that a k-ary function f: A* — A has the
n-interpolation property if, for every subset N< A* of given finite cardin-
ality m, there is an algebraic function g: A¥ — A such that g|N = f|N.
Since every function has the 1-interpolation property, we will assume

* This work was performed when the second-named author was a visiting-profes-
sor in Kassel. He is indebted to Prof. B. Bosbach for the invitation.
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7 > 2 throughout this paper. An algebra % has the n-interpolation property
for k-ary functions if every k-ary function f: A¥ — A has the n-interpolation
property. If this holds for functions of arbitrary arity k e N, we say that
A has the n-interpolation property. If A has the n-interpolation property
for all n € N, then we say: U has the interpolation property. Such algebras
are often called locally functionally complete.

Let % be a universal algebra. A function m: A% — A is called a Mal’cev
Sfunction if the following equations hold for all 2,y e A4:

m(x,s,y) =y, m@,y,y) =az.
A function d: 43— 4 is called a (ternary) majority fumction if the
following equations hold for all z,y € 4:

d(z,z,y) = d(z,y, ) = d(y,z,x) = @.

Next, we give the definition of a local variety (see Hu [7]):

Let K be a class of similar algebras and let D, H, 8, P,denote the oper-
ators of forming, respectively, directed unions, homomorphic images, subal-
gebras and direct products of finite families. Then we call DHSP,(K)
the local variety V,(K) generated by K. The class K is a local variety if
K = V,/(K).

Our first principal result, Theorem 3.2, is a characterization of uni-
versal algebras having the n-interpolation property and it can be viewed
as a generalization of a theorem in [9]. As an interesting corollary
we obtain a characterization of single algebras which have the 2-inter-
polation property (Corollary 3.4).

In Section 4 we investigate the m-interpolation property in local
varieties. Our main result here is Theorem 4.1. As a corollary to this
result we get a sharper form of the consequence of Gumm’s theorem,
stated in the introduction (Theorem 4.2). In addition we characterize
all abelian groups which have the n-interpolation property for some
integer n >2 (Theorem 4.3).

Finally, for a local variety V,, which is congruence permutable, we
describe all algebras % e ¥V, which have the n-interpolation property for
some integer n > 2, except for the case of algebras which have the 3-inter-
polation property but not the 4-interpolation property. This case remains
as an open problem.

3. The n-interpolation property. Let A = (4, 2> be a universal
algebra which has the n-interpolation property for all k-ary functions
f: A¥ > A4 and let t <k, t € N. Since every t-ary function g: 4 - 4 can
be considered as a k-ary function, the algebra U has the n-interpolation
property for all t-ary functions, ¢ < k. By a theorem of Sierpinski [14]
we know that every function f: A4¥* > A (ke N, k> 2) can be obtained
by composition of binary functions h: A?-—> A. Therefore we have
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LEMMA 3.1. Let n be a positive integer and let A be a universal algebra.
Then exactly one of the following three cases occurs:

(a) A has the n-interpolation property for all functions f: A* — A (k € N,
arbitrary).

(b) A has the n-interpolation property for exactly the set of all unary
functions f: A — 4.

(¢) A fails to have the n-interpolation property for k-ary functions for
any k € N.

The alternatives (a) and (c¢) obviously do occur; when they occur
is the subject of our subsequent discussion. Alternative (b) also occurs;
for example, consider an algebra U with a universe A of n elements,
n > 3, and with fundamental operations just all unary functions f: A — A.
Then A clearly has the n-interpolation property for all unary functions
g: A— A, but no binary function h: A*—> 4, which depends on both
arguments, can be represented on any n points of its domain by an alge-
braic function.

Next, we observe that an algebra which has the n-interpolation prop-
erty for some n > 2 cannot have nontrivial congruence relations.

LeMMA 3.2. Let n> 2 be an integer. If A = (A, 2) has the n-inter-
polation property for all unary functions f: A — A, then U is simple.

Proof. Let ® # 0 be a congruence relation on %A and let a,be A
(a # b) such that a®b. Let ¢ be any element of A. Since A has the n-inter-
polation property for all unary functions, there is an algebraic function
p: A — A such that p(a) =¢, p(b) = b, hence ¢@b for all ¢ e A. Thus
we have @ = 1.

Let n > 2 be an integer. To formulate Theorem 3.1, a subalgebra
M < A* is called an algebraic subdirect power if the following properties
hold:

1. M contains the diagonal A4 < A",

2. for every 1 <4 < j< n there is an element (a,, ..., a,) e M such
that a; # a;.

THEOREM 3.1. Let n > 2 be an integer and let A = (A, Q) be a simple
algebra such that:

(a) there is a Mal’cev-function m: A® — A which has the n-interpolation
property;

(b) there is an element a € A and a nonconstant fumction q: A* > 4
which has the n-interpolation property and such that q(a, ) = q(x, a) = a
for all z € A.

If M < A™ 18 an algebraic subdirect power, then M = A",

Proof. First we observe that M is a subdirect power of ¥, since
P contains 4 < A". Hence the kernels =,, ..., w, of the projections of
M onto A satisfy #;A ... Az, = 0. In view of Birkhoff’s [2] characteriza-



232 M. ISTINGER ET AL.

tion of direct products it suffices to show that for all 2 < ¢ < n the fol-
lowing properties hold:

(i) 7yA ... Amy_, and z; permute,

(ii) (oA ooo Am_y) vy =1

First we show property (i). Let Z = (2, ..., @,)y ¥ = Y1y .-y ¥Yn)y
Z = (2yy..+92,) be elements of I and let Z(w A ... A7,_,)7m,Z. Hence
x; =y, for j =1,...,i—1 and y; = 7. Let m be an algebraic function
which represents a Mal’cev function on the following » elements of A3:

(@15 Y1y 21)y ooy (Tny Yny 2,,)- Since 4 < M, m can be extended to an alge-
braic function m: M* —IM, defined by

m(z, §J,2) = (m(wly Y1y Z1)y <eey M(Dpy Ypy zn)) eI,
we have
Zu,m(Z, Y, 2) (A oo ATy, )Z
which implies
(LA ooo ATy y)om < mO(Ty A oot AToy_y).

By symmetry the reverse inclusion follows.

Now we show property (ii). Since the projections are maximal (% is
simple), we have

(ﬂl/\ cee An,-_l) Vn‘ =I or ﬂi.

By induction on » we will prove that 7; A ... A ;& =,.

Let n = 2. Since M is an algebraic subdirect power in 2%, there are
(a;y @,) €M and (a,, a,) eM, a, # a,. Then (a,, a,)n,(a,, a,) holds, but
not (a,, a,) 7, (a,, a,), hence =, & =,.

Now let » > 2 and suppose our assertion is true for all k¥ < n. By the
induction hypothesis the projection of Mt into any of its n —1 coordinates
is A", Since ¢: A®—> A4 is not constant, there are b, ¢ € A such that
q(d, ¢) # a. Therefore the following elements are in I for some z,y € A:

T, = (@, a,8,...,a,b), T, =(a,y,a,...,a,0).

Since M is an algebraic subdirect power in A”, ¢ extends to an alge-
braic function g: I —M, defined by §(Z, ) = (¢(®1) 1)) ---y ¢(Tn, ¥,))-
Then §(Z,, %) = (@, ..., a,q(b,¢)) and gq(b,c) #a. Hence we have
A .. Am,_ <&k 7,, which completes our proof.

Now we can give a characterization of algebras which have the
n-interpolation property.

THEOREM 3.2. Let n > 2 be an integer. A universal algebra A = (4, 2)
has the n-interpolation property if and only if N has the following properties:

(1) A 18 simple;
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(2) there is a function q: A* — A such that:

(x) q %8 not constant,

(B) there i8 an element a € A such that q(w, a) = q(a, v) = a for all
wved,

(v) q has the n-interpolation property;

(3) there is a Mal’cev function m: A® — A which has the n-interpolation
property.

Proof. If A has the n-interpolation property, conditions (1)-(3)
obviously hold.

Now let % have properties (1)-(3). According to Lemma 3.1 it suf-
fices to show that every binary function f: A* — A4 has the n-interpolation
property. Let 8 be an n-element subset of A2. Since every constant func-
tion x»: A* - 4 and the two projections p,(x, ¥) = « and p,(z, y) = y (for
all z, y € A) are algebraic functions, the restrictions of all algebraic functions
g: A* > A to the m-element subset 8 can be considered as an algebraic
subdirect power I in A". By Theorem 3.1 we have I = A". Hence every
f: A* > A has the n-interpolation property.

COROLLARY 3.1. Let n>2 be an integer. A wuniversal algebra A
= (A, 2) has the n-interpolation property if and only if the discriminator
t: A3~ A, defined by

z fx#y,

t(a”i‘hz):{z ifo=y

has the n-interpolation property.

Proof. If A has the n-interpolation property, then ¢ has the n-inter-
polation property.

If ¢ has the n-interpolation property, then U is simple. ¢ is a Mal’cev
function and if we set gq(,y):=t(, t(2,y, a), a), a € A arbitrary, our
assertion follows from Theorem 3.2.

Remark. Condition (2) of Theorem 3.2 can be modified to the exist-
ence of a ternary majority function which has the n-interpolation prop-
erty. Indeed, if ¢: A > A is the discriminator (which has the n-inter-
polation property because of Corollary 3.1), then ¢(z, t(z, y, 2), z) is a ma-
jority function having the n-interpolation property. In this form Theo-
rem 3.2 is a sharpened version of an immediate corollary to Theorem 4.3
of Pixley [13].

COROLLARY 3.2. Let n>2 be an integer. A universal algebra U has
the n-interpolation property if and only if

(1) 4 s simple;

(2) there are binary functions p,t, q: A*— A such that:

(«) P, g, t have the n-interpolation property,

(B) p(@,2) =p(y,y) for all v,y € A,
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(v) t(p(x, 9),y) = = for all v,y € 4,
(3) q 8 not constant,

(e) there i3 an element a € A such that q(x, a) = q(a, z) = a for all
zeA.

Proof. By Theorem 3.2 we only have to show that there is a Mal’cev
function m: 4®*— A which has the n-interpolation property. We set
m(z, y, 2) =: t(p (@, ¥), z) Then m (2, @, 2) = t(P (2, @), z) = t(P (2 2), z) =2
and m(x, 2, 2) = t(p(®, 2), 2) = .

COROLLARY 3.3. Let n>2 be an integer. A finite universal algebra
A has the n-interpolation property if and only if

(1) A is simple;

(2) there are binary functions p, q: A* — A such that:

() (@, ) =p(y, y) for all z,y €A,

(B) (o a) is bijective for every ac A,

(v) g 8 not constant,

(8) there is an element a € A such that q(x, a) = q(a, ) = a for all
xed.

Proof. In view of Corollary 3.2 we only have to show the existence
of a function ¢: A® > 4 such that ¢(p(w, y), y) =« for all #,y e A and
which has the n-interpolation property. Let |A| = s. Since p(z, a) =: p,(x)
i8 bijective, p® (x) is the identity function on 4 for all a € 4. Now we set
t(w, y) : = p3~'(x). Then

t(p(@,9), 9) = py~" (p,(®)) = P} (2) = =.

COROLLARY 3.4. A universal algebra A has the 2-interpolation property
if and only if

(1) A s simple;

(2) there is & Mal'cev function m: A% — A having the 2-interpolation
property.

Proof. Observe that in the proof of Theorem 3.1 the function q is
only used in the case of » > 2.

COROLLARY 3.5. A wuniversal algebra A has the interpolation property
(tn other words: W is locally functionally complete) if and only if

(1) A is simple;

(2) there is a Mal’cev function m: A®> — A which has the interpolation
property;

(3) there is a monmconstant function q: A*— A which has the inter-
polation property and such that there is an element ae A with q(x, a)
= q(a, ) = a for all v € A.

The Remark following Corollary 3.1 applies here as well.
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4. Interpolation in local varieties.

Definition. A local variety V, is called congruence permutable if the
congruences of each algebra % € ¥V, permute.

LEMMA 4.1. Let n > 2 be an integer and let V, be a local variety such
that for every algebra U e V, there is a Mal'cev function m: A* -~ A which
has the m-imterpolation property with respect to polynomials (i.e. for each
n-element subset N < A® there is a polynomial g: A* - A such that g|N
= m|N). Then V, i8 congruence permutable.

Proof. Let % € V,; 6,, O, congruence relations on % and ¢ 60, y 6, 2.
Let p be a polynomial which interpolates a Mal’cev function on {(z, z, 2),
(2, 2, 2)}. Hence z = p(, @, 2) O,p (%, ¥, 2)0,p (2, 2, 2) = .

Following Burris [3] and Werner [15] a congruence on a finite prod-
uct of algebras will be called skew if it does not arise as a product of
congruences on the factors.

LEMMA 4.2. Let U be an algebra which has the 4-interpolation property.
Then there are no skew congruences on .

Proof. According to Fraser and Horn [4] it suffices to show that
for any nontrivial congruence ©® on A* the following condition holds:

(a, b) O(c, @) implies (a, x) O(c, ) and (y, b) O(y, d) for all x,y e A.

Suppose the four elements a, b, ¢, d are different. Then, since U has
the 4-interpolation property, there is an algebraic function f: A — 4 such
that f(a) = a, f(b) = =, f(¢) = ¢, f(d) = 2z (x € A, arbitrary). Then f X f:
A* > A% defined by fxf(@, y) = (f(2), f(y)) for all (z, y) € A% is a unary
algebraic function on %, hence we have

(a, 2) =fxf(a,b)Of Xf(c, d) = (¢, 2).

In a similar fashion one obtains:
(a, b) O(¢, d) implies (for all y € A) (y, b) O(y, d).

In case some (or all) of the four elements coincide analogous arguments
and using the fact that @ is a nontrivial congruence show that the con-
dition of Fraser and Horn holds.

Let A = {4, 2) be a universal algebra. Let ¥ be a positive integer
and 8 a subset of A*. A function f: § — 4 is called conservative if, for any
(@1y ...y a;) €8, f(a,, ..., a) is an element of the subalgebra of A which
is generated by {a,, ..., a,}. f is isomorphism preserving if, for every internal
isomorphism ¢ of % and element (a;,...,a,) in 8, ¢(f(a,...,a,))
= f(¢a,, ..., pa;) whenever both sides of the equation are defined. Here
an internal isomorphism is understood to be any isomorphism between
(not necessarily distinet) subalgebras of %. An algebra U is called locally
quasiprimal (see Pixley [13]) if U is nontrivial and for each finite subset
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F c A* and function f: F — A, which is both conservative and isomor-
phism preserving, there is a polynomial p such that p|F = f|F.

LEMMA 4.3. Let n > 2 be an integer and V, a local variety such that
for all algebras W e V, there i8 a Mal’cev function m: A* —~ A which has
the m-interpolation property with respect to polynomials. Suppose A eV, is
simple, has proper subalgebras of at most one element and A* has no skew
congruences. Then W is locally quasiprimal.

Proof. By the implication (iii) =- (i) of Theorem 4.3 of Pixley [13]
it suffices to show that the local variety V (), generated by ¥, is arithme-
tical (in other words: is congruence permutable and congruence distrib-
utive). By Lemma 4.1, V() is congruence permutable. Next observe,
since A* has no skew congruences and V,() is congruence modular, it
follows from [3] that no finite direct power of A has skew congruences. Hence,
since U is simple, for each integer m > 1, the congruence lattice of A™ is
isomorphic to the distributive lattice 2™. Since U is simple and has only
one-element proper subalgebras, SP,(%) < P,(A) so that V,(A) = DHP,(A)
= DP;(A), the latter equality following from the congruence distribu-
tivity for each algebra in P,(W). Hence V,(A) = DP,(A), where P, (A)
is arithmetical. Finally, it is trivial that a direct limit of arithmetical
algebras is arithmetical and hence we have the conclusion.

The following theorem generalizes a result of Werner [15]:

THEOREM 4.1. Let n > 2 be an integer and V, a local variety such that
for every algebra W e V, there is a Mal’cev function m: A* — A which has
the m-interpolation property with respect to polynomials. Then a simple
algebra N € V, has the interpolation property if and only if A* has no skew
congruences.

Proof. If A has the interpolation property, then * has no skew
congruences by Lemma 4.2. Now let %* have no skew congruences. Then
by adding the elements of A as nullary fundamental operations, we
obtain an algebra %+ which has no proper subalgebras. By Lemma 4.3,
A* is locally quasiprimal, and hence % has the interpolation property.

COROLLARY 4.1. Let V; be a local variety as in Theorem 4.1. Then A
has the inmterpolation property if and only if it has the 4-interpolation

property.

Proof. If %A has the interpolation property, then, by definition, %A
has the 4-interpolation property. If % has the 4-interpolation property,
then ¥ is simple and A* has no skew congruences (Lemma 4.3). Hence,
by Theorem 4.1, it has the interpolation property.

Next we determine the structure of simple algebras in congruence
permutable local varieties.
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Definition. Let % be a universal algebra. A function f: 4* > 4
is called affine (with respect to an abelian group & = (4, +)) if for
all elements @, ..., T, ¥4, ..y Yi € 4 the following equation holds:

F@1yoeey @) +FWry ooy Y) = F(@1+ Y1y .-y T +y) +£(0, ..., 0)

(0 denotes the neutral element of ®).

An algebra A = (4, 2) is called affine (with respect to an abelian
group ® = {4, +)) if every w € 2 is an affine function.

THEOREM 4.2. Let n > 2 be an inieger and V, a local variety such that
for every A € V, there is a Mal’cev function m: A% —~ A which has the n-inter-
polation property with respect to polynomials. Then a simple algebra A e V,
either has the interpolation property or 18 affine with respect to an abelian
group & = (A, +)> which is an elementary p-group (p prime) or torsion
free.

Proof. By inspecting the proofs of the theorems leading to Theo-
rem 6.1 of Gumm [6] one sees that compatibility of the Mal’cev function
m: A* - A, which has the n-interpolation property, is all that is required.
Hence Gumm’s proof applies equally in the present setting.

Remark. Note that if %« is a simple affine algebra in a local variety
V, as in Theorem 4.2, the group operation + can only be chosen from
the set of binary functions having the n-interpolation property.

THEOREM 4.3. There is no abelian group which has the n-interpolation
property for any n > 4. Only the cyclic group of order 2 has the 3-inter-
polation property. Only the groups of prime order have the 2-imterpolation
property.

Proof. The first statement follows from the fact (Lemma 4.2) that
if an algebra % has the n-interpolation property for n > 4, then %* cannot
have skew congruences. If % is an abelian group, then U* always has
a skew congruence (indeed, % is abelian just in case the diagonal is a nor-
mal subgroup of %A?).

The cyclic group Z, has the 3-interpolation property, because the
function ¢: Z% — Z,, defined by

a it (z,9) = (a,a),
0 if (z,y) # (a,a)

(a denotes the nonzero element of Z,), has the 3-interpolation property
a8 one easily checks. Our assertion then follows from Theorem 3.2. In
order to show that there are no other abelian groups having the 3-inter-
polation property, we consider cyclic groups Z,, ¢ prime and ¢ > 2. Let
x be the generator of Z,; then -+« # 0. Suppose Z, has the 3-inter-
polation property; then there is an algebraic function p: Z, — Z; such
that p(x) = 0, p(22) # 0, p(0) = 0. Then p would have to be affine,

q(z, y) =
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but p(x)+p(x) # p(22)+p(0). The last statement follows immediately
from Corollary 3.3.

THEOREM 4.4. Let V, be a local variety as in Theorem 4.2. Then every
simple algebra of V, has the 2-interpolation property.

Proof. The assertion follows readily from Theorem 4.2 together with
the Remark following Theorem 4.2 and Corollary 3.3.

Because of Corollary 4.1, we know that in the case of a local variety
V, as in Theorem 4.2 the 4-interpolation property implies the interpolation
property. In order to give a complete list of all algebras % € V,, which
have the m-interpolation property for some integer » > 2, the following
problem remains:

PROBLEM. Let » > 2 be an integer and V, a local variety such that
for every U € V, there is a Mal’cev function m: 4* -~ A which has the
n-interpolation property with respect to polynomials. Find all simple
algebras % € ¥V, which have the 3-interpolation property but not the
4-interpolation property. (P 1137)

Regarding this problem one immediately makes the following ob-
servations:

a. Every % € ¥V, (¥, as above) which has the 3-interpolation property
but not the 4-interpolation preperty is necessarily affine with respect
to an elementary abelian 2-group.

b. Every % e V, (V, as above) which is affine with respect to the
group Z, has the 3-interpolation property but not the 4-interpolation
property.

c¢. On Z, xZ, one can construct a simple affine algebra, by adding
one suitable endomorphism of Z, x Z, as fundamental operation, which
does not have the 3-interpolation property. But by adding all endomor-
phisms of Z, x Z, as fundamental operations one obtains a simple affine
algebra which has the 3-interpolation property (at least for unary functions)
but not the 4-interpolation property.
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