COLLOQUIUM MATHEMATICUM

VOL. LI 1987 FASC. 1

ON LATTICES OF VARIETIES OF UNIVERSAL ALGEBRAS
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0. Let N denote the set of non-negative integers. We shall consider
only algebras of a given type t: T — N. We shall denote by | f;},.s the set of
fundamental polynomial symbols associated with t (see [4]). The type t we
shall call nullary if ©(T) = {0} or T= @ and t will be called non-nullary
otherwise. Algebras of the nullary type will be called nullary. The type t will
be called unary (see [7]) if 1et(T) < {0, 1]. Let ¢ be a term associated with
7. We denote by V(¢) the set of variables occurring in ¢. A term ¢ will be
called essentially n-ary if |V (¢)] = n. Let ¢ and ¥ be terms associated with t.
An equality ¢ =y is called regular (see [5]) if V(p)= V(¥). An equality
which is not regular will be called non-regular.

Let K be a variety of type . We denote by E(K) the set of all equalities
satisfied in any algebra from K, by R(K) the set of all regular equalities from
E(K) and we denote by Ky the variety of algebras of type t defined by R(K).
A variety K will be called regular if E(K)= R(K) and will be called non-
regular otherwise. If K, and K, are two varieties of type t then it is customary
to denote by K; v K, the variety of type t defined by E(K,) ~ E(K;) and to
denote by K; A K, the variety of type t defined by E(K,)uE(K,). It is
known that the set L(t) of all varieties of type t together with the operations
v, A is a lattice. We denote by N () the set of all non-regular varieties of
type 7 and by R(7) the set of all regular varieties of type t. It was shown in
[6] (Corollary 2) that if K, and K, are non-regular then K, v K, is non-
regular. Thus from the definition of v, A it follows that (N(t); v, A) and
(R(r); v, A) are both sublattices of (L(r); v, A). Denote by D(r) the
variety of type t defined by the equality x, = x,. Observe that if t is a
nullary type then D(z) is the only non-regular variety of type t. Obviously
D(7) is always the smallest variety in L(r) and N(1).

In this paper we prove (Theorem 1): if t is a non-nullary type of
algebras then there are no maximal elements in the lattice (N(1); v, A).
Further we show (Theorem 2) that: the mapping ¢ defined by the formula
o(K) = Ki is an embedding of the join semilattice (N(z); v) into the join
semilattice (R(z); V).
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These two theorems have been proved for unary algebras in [7].
J. Dudek and E. Graczynska in [2] considered the so-called strongly non-
regular varieties of type 1, i.e. varieties satisfying the equality ¢(x,, x;) = x;
for some essentially binary term ¢.

1. Preliminaries. It was proved in [6], Lemma 2 that:

(i) if K is a non-regular variety of type 7: T—» N where t(T)\ {0, 1}
# @ then there exists an essentially binary term ¢(x,, x,) associated with 1
such that the equality ¢(x,, x;) = @(x,, x,;) belongs to E(K).

Let 7: T—> N be a non-nullary type of algebras. We denote T* =
{t: 7(r) # 0]. We define a new type t* putting t*: T* — N where t* = 7| T*
and we accept {f,},.r+ as the set of fundamental polynomial symbols associ-
ated with t*. If A = (4; {f;},.r) is an algebra of type t then we denote by UA*
the non-nullary reduct of 2, ie. U* = (A4; | f;}icrv)- So U* is of the type 7*.
Finally if K is a variety of type t then we denote by K* the variety of type t*
defined by all equalities from E(K) in which nullary polynomial symbols do
not occur. It was proved in [6] (Theorem 4) that:

(i) If K is a non-regular variety of algebras and there exists an essen-
tially binary term x-y such that the equality x-y = x-x belongs to E(K),
then any algebra U =(A4; {f;},cr)€ Kg is of the form: there exists a semilat-
tice (I'; <); if there are nullary fundamental polynomials in A this semilattice
has the smallest element w; there exist a family of subalgebras {2} of UA*,
where iel\{w}; if there are nullary polynomials in % then there exists a
subalgebra A, of A to which the values of all fundamental nullary poly-
nomials belong; the carriers A4; of all U are mutually disjoint; A e K* for
i#wand W, eK if aqjeA;jfor j=1,2,...,1(t) then fi(a,, ..., ay,) belongs
to the subalgebra indexed by sup {i;, ..., iy}

From (ii) it follows that:

(iii) If K is a non-regular variety of type t: T— N where 7(7)\{0, 1}
# 0, Uec Ky and |I| > 1 then U satisfies only regular equalities.

The proof of (iii) is identical with the last part of the proof of Theorem 1
from [6] so we omit it here.

2. Lattices of regular and non-regular varieties. Our aim now is to
prove the following:

THEOREM 1. Ift: T — N is a non-nullary type of algebras then there are
no maximal elements in the lattice (N(z), v, A). Moreover for any variety
Ke N(1) there exist a variety K eN(t) and a finite algebra W such that
K <K, NecK and U¢K.

To prove this theorem we need some notions.

For any term ¢ associated with t and any variable x, we define the
deepness d(x;, @) of x, in ¢ as follows:
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(1) if f, is a nullary fundamental polynomial symbol then d(x,, f) =
—00;
0 if k=i
2 ) = ’
(2) d(x, x) {—oo otherwise;
(3) if ¢y, ..., ¢ are n-ary terms, f, is a fundamental polynomial

symbol with 1(t) # 0 and d(x;, ¢;) is already defined for i =1, ..., 7(¢) then:
d(xk’j;((pla cees ‘Prm)) = max {d(x,, 1), ..., d(xy, @r)} + 1.

We accept —oo+m = —oo for a non-negative integer m.
For a term ¢ associated with t we still define the number d,(¢) putting:
4) if 7(t) =0 then dyo(f) =0;-
(5) do(x;)) = —o0;
©6) if ©(t) #0; @y, @2, ..., @y, are terms for which dy(¢;) is already
defined, i =1, ..., 7(r) then

do(fn((Px, ceey (Pr(n)) = max {do(‘Pl), cees do(‘Pmy)}'*‘ 1.

For any type 7, where t(T)\{0, 1} # @ and a natural number n >0 we
define an algebra A, as follows:

U, = ({0, 1, ..., n}, {fher) putting £, =0 if 7(r) = 0 and f(ay, ..., )
= min {n, max {a,, ..., a,,}+1} otherwise.

Let P%(x,, x;) be the set of all terms associated with t constructed by
means of at most two variables x,, x,.

Lemma 1. If 7(T)\{0, 1} # @, @eP?*(x,, x;) and &(x,, x,) is the
realization of ¢ in W, then we have in U,:

@(cy, ¢;) = min {n, max {do(¢), ¢, +d(x,, @), c;+d(x,, )} }.

Proof. We use induction on the length L(¢) where L(¢) is the number
of signs in ¢ including parantheses. Obviously the lemma holds for nullary
fundamental polynomial symbols and variables x,, x,. So the lemma is true
for all terms of the length not exceeding 3.

Assume the lemma holds for all terms from P?(x,, x,) of the lengths not
exceeding q>3. Let @eP?(x,, x;), L(¢p)=q+1. So it must be: ¢
= fi(@1s ..-» Py fOr some teT, t(t)#0, and some ¢,eP?(x,, x,), k
=1,...,1().

Obviously L(e) <gq, for k=1, ..., 7(¢).

We shall use the following notations:

avp for max{a, B};

a A B for min{a, B};

s

V @ for max{a,,..., a)}.
k=1
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So we have by (1)-(6):

t(t)

Gy, ) =n A [( \_/ @lcy, c3))+1]

()
\=/ [ (do(@) v [e1+d(x;, @)] v [c2+d(x2, 9)])] +1]

A {[n A {k\fl (do(@y) v [c1+d(xy, 9] v
vilea+d(xz, @)1)}]+1}

—n A fnt]) A [k’\i/"1 (do(@4) v [ey +d(x1, @] v

v [ea+d(x2, 9)])+1]}

=n A [(V ol v e+, 0] v [eatd(xa, @D)+1]
A {[:\:/‘)1 do(e) v ,S_t/)l [c,+d(xy, @)] v :\Z/)l ey +d(x,, (pk)]]-!-l}
A {[;\:/nl do (@) v (c1+ :\Z d(x,, @) v (c2+ :\:/)1 d(x2, )]+ 1}
—nA {[k’\i/"1 (dolo0)+1] v [c, +(:\:/)ld(x1, o0+ 1)] v

vler+(V dlxa o) +1)]

= n A [do(@) v [ey +d(xy, )] v [e3+d(xs, 91]],
so the lemma holds for g+ 1 and therefore for arbitrary q. Q.E.D.

Proof of Theorem 1. For a unary type t the theorem was proved
in [7]. So we can assume that t(7)\ !0, 1} # @.

By (i) there exists an essentially binary term ¢(x,, x,) associated with t
such that the equality

)] @(xy, x3) = @o(x,, x)

belongs to E(K). Let K” denote the variety of type t defined by (7) only.
Obviously K < K”. Since t(T)\!0,1} # @, there exists a non-nullary
fundamental polynomial symbol f, associated with 7. Denote

S1) = fiolx,oos ), 71 x) = f(f*(x).

Let m = max |d,(p). d(x,. @), d(x,, @)!. By (3) it must be m > 0. Let r =m
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+1—d(x;, @) and let ¥ (x,, x;) = ¢(x,,f"(x;)). Denote by K’ the variety of
type t defined by the equality:

(8) Y(xy, x3) =¥ (x,, x;) only.

Obviously K” < K’ since (8) is a consequence of (7). To complete the proof
we shall show that the algebra 2, defined above for n = m+1 belongs to K’
but does not belong to K”. It follows easily from (1)-(6) that

d(x3, ¥) = d(x;, @)+d(x3, f7(x3)) = m+1.

So by Lemma 1 we have: VY(c,c,)=V(c,c;)=m+1 for any
¢, c;€{0, ..., m+1]. However @(0, m+1)=m+1 but

@(0, 0) = min {m+ 1, max {dy(¢), d(x,, ¢), d(x3, @)} } = m.

So A,.,eK and U, ,¢K".

Let us denote by S = S(r) the variety of type t: T — N defined by all
possible regular equalities which can be written down by means of terms
associated with 7. The structure of any algebra A = (4, |f,},.r)€S is simple,
namely: If T= @ then U=(A4, @). If there are nullary fundamental
polynomials in U then there exists a fixed element O€ A such that f = O for
any t such that t(t) = 0. If z(r) = 1 then f;(x) = x since the last equality is
regular, so any unary fundamental operation is the identity; if t(1)¢ 0, 1},
then let us denote x®y = f(x, y, ..., y), thus @ is a semilattice operation
since the equalities x®x = x, x@y = y®x, xB(yDz) = (xDy)@z written by
means of f(x, y, ..., y) are regular, we have also x@®f, = x for any r such
that 7(¢1) =0 and fi(x;, ..., X)) =X, D ... DXyy-

Anyway, S is consistent and it is easy to show that S is equationally
complete.

Algebras from S in the case where 0¢1(T) and t(T)\!1} # @ were
considered by J. Dudek in [1] and were called there t-semilattices. The unary
case was considered in [7].

Let us denote by U(t) the variety of type t defined by the empty set of
equalities. Then we have:

(iv) S is the least element and U(z) is the greatest element of the lattice
(R(), v, A).

Let (4; v, A) be a lattice with the greatest element 1. An element ae A
is called a coatom if a # 1 and for any be A such that a < b we have b =a
or b=1 1It is known (see [8]) that if 7(T)\|0} # @ then there are no
coatoms in the lattice (L(t), v, A). So we have:

CoroLLARY 1. There are no coatoms in the lattice (R(z), v, A). .

In fact, let Ke R(7) and K # U(1). By the result of Tarski quoted above
there exists K'eR(r) such that K ¢ K, but K' must be regular since
E(K) < E(K) = R(K).
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3. Connections between join semilattices of regular and non-regular
varieties. We want now to consider properties of the mapping ¢: L(t) —» L(1)
defined by the formula ¢(K) = Kz. Obviously we have:

(v) e(e(K)) = e(K);
(vi) if KeR(7) then o(K) = K;
(vi)) K < o(K);
(viii) if Ke N(t), then ¢(K) = K v S. In fact

E(Kg) = R(K)=E(K)nE(S)=E(K v S).

By (viii)) we have:
(ix) if K, K'e L(z) then

e(K v K') = ¢(K) v ¢(K) = ¢(K) v K'.
In fact
e(KvK)=(KvK)vS=(KvS)v(KvS)=e(Kve(K)
=(KvS)vK=9KvVvK.

LEmMA 2. If K', K"eN(1) and K' # K" then o(K') # o(K").

Proof. For unary algebras the lemma was proved in [7]. Let
1(T)\{0, 1} # 0. Assume ¢o(K)=¢(K"). If UeK then WUeKp and
consequently e K so by (ii) it is of the form described in (ii) for K = K”. It
cannot be [I| > 1 since then by (iii) U satisfies only regular equalities
contrary to the assumption K'e N(r). Thus |I] =1 and by (ii) UeK". By
symmetry we get K’ < K'. Finally K" = K".

'An endomorphism h of a semilattice (B, -) is called a retraction if it is
idempotent, i. h(h(a)) = h(a) for any aeB.

An endomorphism h of (B, ‘) is called splitting if it satisfies h(ab)
=h(a)-b =a-h(b) for any a, be B. Further h is called extensive if a < h(a)
for any ae B, where < is the semilattice order.

The results of this chapter we can now formulate as follows

THEOREM 2. The mapping @: L(t) — L(t) has the following properties:

(a,) @ is an extensive splitting retraction of L(t);

(a;) ¢ is an embedding of (N(z), v) into (R(7), v);

(a3) o maps the least element of N (1) onto the least element of R(z), i.e.,
o(D(1) = S()

(as) the greatest element U(z) of R(t) has no counterimage in N (7).

Proof. (a,) follows by (v), (vii) and (ix). The condition (a,) in the case
where 7 is nullary is obvious since we have only 1 non-regular variety
namely D(z). If © is unary then (a,) follows from [7] (thereom 3). If
1(T)\ {0, 1} # O then (a,) follows by lemma 2 and (a,). (a;) follows from the
definition of S(t). The property (a,) can be easily obtained from Theorem 1.
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Remark. Any of the sets N(t) and R(7) is a sublattice of L(z), so one
could expect that g is an embedding of the lattice N(t) into the lattice R(z).
However, it is not the case in general since ¢ need not preserve A, see [3].
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