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0. Introduction. Let a: GxX = X be a transformation group of a
compact group G on a compact metric space X. Let 2* denote the hyper-
space of nonvoid, closed subsets of X, topologized by the Hausdorff metric,
and let B: G x2¥ —»2X be the induced action, i.e.,

Bg, A) = U alg, a).

aeA
Such actions are studied in [8] and [9]. In particular, in [8] Torunczyk and
the second-named author examined the translative action of S on its own
hyperspace, finding that the orbit space contains a lattice of naturally defined
Hilbert cube manifold - Eilenberg-MacLane spaces of the type K(Zy, 2)
corresponding to the lattice of finite subgroups of S'. (Here Z 4, denotes the
localization of the integers at a set P of primes.) In order to extend this
result to other compact Lie groups we have had to analyze hyperspace
actions of finite groups induced from actions on Peano continua, and, in
particular, from actions on finite graphs.

In this paper*, we show (Corollary 2) that if X is a nondegenerate
Peano continuum P and if B is as above, then 2F/B is a Hilbert cube if it is
an AR (absolute retract for metric spaces).. This is an equivariant version of
the Curtis—Schori Theorem [1]. [In general, it is unknown whether orbit
spaces of infinite-dimensional ANR’s by finite group actions are ANR’s. For
example, it is still unknown whether a semi-free action of Z,, on a Hilbert
cube with a unique fixed point, has the orbit space of the homotopy type of
a CW-omplex (cf. [0], [9], [10]).] We do not here attempt any further
analysis in the general case. However, we do show (Theorem 2) that, for a
finite, connected, nondegenerate graph I', 27/B is a Hilbert cube. Our proof of
Theorem 1 relies heavily on Torunczyk’s topological characterization of the

* This research was partially supported by N.S.F. grants.
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Hilbert cube [7]. Theorem 2 should be thought of as an analog of [6], in
which Schori and the second-named author established that 27 is a Hilbert
cube.

1. Preliminaries. Given a group action a: G x X = X, X a metric space,
we say that the metric d on X is G-equivariant (with respect to a) if, for every
geaG,

d(gx, gy) = d(x, y).

Here, as is customary, gx denotes a(g, x). If G is finite and if ¢ is any metric
on X, then

d(x, y) = max {o(gx, gy) g €G}

defines a G-equivariant metric d on X. Thus, in the remainder of this paper
we may, and do, work only on G-equivariant metrics. For such a metric d on
compact X, d* denotes the induced Hausdorff metric on 2*. The group
action a: G x X — X induces a group action B: G x2X¥ — 2% defined by

Blg, 4) = {gal ac4)}.

It is immediate that if d is a G-equivariant metric with respect to a, then 4*
is a G-equivariant metric with respect.to f. In this case, d* induces a metric
d’, on the orbit space 2X/B, defined by

d'([A], [B]) = min {d*(C, D)| =(C) = A, n(D) = B},

where n: 2¥ —=2%/8 is the projection.
Given a group action a: GxX = X, a map f: X = X is G-invariant
with respect to a if f(gx) = gf (x) for each x e X and g €G. Finally, for 4 €2,

2% = {Be2¥| B o 4},
and, if also g €G,
gA = | a(g, a) (= pA).

acA
2. Moving 2* G-equivariantly off sets with nonempty interior. In this
section, let

G=1{go=id, g1, ..., g}

denote a finite group and let P denote a nondegenerate Peano continuum.
Let a: G x P — P be a group action, f: G x2F —2F the induced action. Let d
be a metric on P which is G-equivariant with respect to a. Define a;: P =P
by a;(x) = a(g;, x). The main result of this section is that the identity on 2°
can be approximated by G-equivariant maps whose images miss sets with
nonempty interior. This, in turn, allows us to approximate the identity on
2P/B by maps missing sets with nonempty interior.
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Lemma 1. Given A < P such that Int A # Q, there is a nonempty open set
U contained in Int A such that for 1 <i,j<k either

a,-lU = a_,l U
or
o (U) ne;(U) = Q.

Note. The proof of Lemma 1 uses only that P is Hausdorff.
Proof. If k =0, there is nothing to prove. If k> 1, let U, =IntA. If

aolU = a,|U, let U, = U,. Otherwise, choose an open set U, such that
®¢UICU0 and a'o(Ul)mal(Ul)=®.

If k=1, then U = U, satisfies the conclusion of the lemma. If k > 2,

consider a,|U,;. If a,|U; =o;|U;, i=0 or i=1, then let U, =U,. If

ar|Uy #o4|Uy, i =0, 1, then choose an open set U, , such that
O#£U,ocU; and (U, o) nag(Uso) = .

If a;]Uz 0 =0a;1U3 0, let U, = U, 4. Otherwise, choose an open set U, ; such
that

O+ Uyi<U,o and a,(Uy,y)noy(Uy,y) = 0.

Let U, = U,,. If k = 2, U, satisfies the requirements of the lemma. If k > 3,
a continuation of the above arguments leads, eventually, to a suitable U
= Uk'

Lemma 2. Let A€2f, P a nondegenerate Peano continuum, be such that
IntA # Q. Let ¢ >0 be given. Then there is a continuous G-equivariant map

[ 2P -2P\U {274 g€G}
such that d*(f, id) <& and such that
f(B)=[B\U ig4| geG}Ju[U{f(BngA) geG}]

for each B€2P and f (B ngA) G gA for each Be2® and g €G. (We agree that
[@)=0)

Proof. By Lemma 1 there is an open set U such that
Q#UclintA

and such that for g;, g;€G either a.|U = a;|U or a:(U) na;(U) = @. Choose
a closed set D — U with nonempty interior. Choose

{hj'j =0,..., r} CG

such that {h;D = D;} = {gD| ge€G} and such that {D;} is a collection of
pairwise disjoint sets. We may, and do, assume that h, = 1, so that D, = D,
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and, also, that ¢ < min {d(D;, D)| D; # D;}. By Lemma 54 of [1] and its
proof, there is a continuous

for 27 22P\25
such that
d*(fo,id) <e¢ and fo(B)=(B\D)u fo(BND)
with fo(BND) & D. Let
fi=hfohit: 2’42’\251., ji=1,...,r.
Let
f=f,o...ofijof,: 2F 2P\ ) {2,‘;j|j=0, o e2P\U {28, g€G).

Then f satisfies the conclusion of Lemma 2.

LemMMA 3. Let A,, ..., A,€2F have nonempty interiors. Then there exist
closed sets D, ..., D (s < n) such that each A; contains gD; for some (g, j) €G
x{1, ..., s} and such that

[U gDl geGl]1n[U gD 9G] =@ if i#j.

Note. The proof of Lemma 3 uses only that P is regular.
Proof. Let U, =IntA4;, i=1,...,n For xeP let

I(x)={il xel g(U))}.
geG

Let Card I(x) be the number of elements in I(x). Choose a, €U, ;uch that
CardI(a,) > CardI(x) for each xeU,.

For i €l(a,) choose g,, €G such that a, €g,, U;, taking g,, = id. Clearly, then
a, € {91,- Uil iel(a,)}.
Also, if j¢I(a,), then
a,¢U{gU)| g€G};

for, otherwise,
a, €[N ig1, Uil i€l(a,)}] ngU;

for some geG and j¢I(a,). Hence, there exists
z e[ﬂ {91,- Uil iEI(al)}] NngUj,

implying Card I (z) > Card I (a,), which contradicts z eg,l,U 1 = U,. Thus, we
may choose a nonempty- open set V; such that

aeVycVc n'{91,- Ui iel(a,))}\U "lgljj' g€G, j¢l(a,)}.
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Note that, for i€el(a,),
A; o U; =91_,-l(91i U) 391—,-1 .

Let ry =1 Let r;=min{i] 1 <i<n,i¢l(4;)}. Choose a,€U,, such
that CardI(a,) > CardI(x), xeU,,. For i€l(a;) choose g, €G such that
a, €g,, U;, taking 92,, = id. Choose V, open in P such that

a,eV,cV,c {gz,- Uil iel(a)j\U {ngl g €G, j¢l(ay))}.
Note that, for i€l(a,),
Ao U; o gz-,-l(gz U)o g;,-l Vs.
Also, ’
[U g%l geG}]n[U igVal 9€G}] =0,
for otherwise V;, ngV, # @ for some g €G. But this cannot be since
gV2 =gU,,(9,,, =id) = U{gU,| g€G, j¢I(a))} = GV;.
If I(a;)ul(ay) ={1, ..., n}, we are done. Otherwise, letting
rs=minf{il 1 <i<n, i¢l(a;)v(ay)},
we may continue the above process until, at step s, we obtain
I(a))u...ul(a) =11, ..., n}.

Then the collection {¥,, ..., ¥, will have the desired properties.

Lemma 4. Let A, ..., A,€2F be such that IntA; #Q, i=1,...,n. Let
¢ >0 be given. Then there is a G-equivariant map

£ \Y Gl i=1, ., n)
such that d*(f, id) <e.

Proof. By Lemma 3 there are closed sets D,, ..., D, such that each A,
contains some gD;, (g,/)€G x {1, ..., s} and such that

[U{gDi geG}]n[U{gD)l geG}] =@ if i#].
By Lemma 2 there is a continuous G-equivariant map

fii 2P -2R\U{20p) g€G}, i=1,...,s,
such that

d*(f,, id) <e,
fi(B)=[B\U {gDi| geG}]u[U{fi(BNgD)}]

and

fi(BngD)) & gD;.
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We may assume
e <min {d(\ {gDi| g€G}, U{gD)l g€G}) i #j}.
The map
f=fio...of;: 2P 2P\ {2§i| i=1,...,n}

has the desired properties.

THEOREM 1. Let a: G xP — P be a group action with G a finite group
and P a nondegenerate Peano continuum. Let B: G x2F —2F be the induced
group action on the hyperspace 2°. Let d be a G-equivariant metric on P and
d* the induced metric on 2F. Then for every ¢ >0 there is a G-equivariant
map

f: 2P 22P\{4] Int 4 # @}

such that d*(f, id) <e.
Proof. Let |x] i=1,2,3,...) be a countable dense set in P. Let

n(x;, 8) = ixeP| d(x;, x) < 3},
(The idea of looking at the sets 5(x;, §) came from the proof of Corollary

2.11 in [4]) The set C(2%) = {h: 27 - 2F| h continuous} with the compact
open topology is a compact metric space. Let

Cs(2P) = {heC(2P)| .h is G-equivariant}.
Then C;(2P) is closed in C(2F). Hence C;(2P) is a Baire space. Let
pVk = {hECG(2P)| h(zl’) < 2P\U {21’1’(%-.1/&)' i= 19 IERE) k:'

Then W, is an open subset of Cq;(2F). By Lemma 4, W, is dense in C(2F),
hence, also, in C5(2F). Thus N{W;| i=1,2,3,...} is dense in Cg(2").
Choose feN{W,] i=1,2,3,...} such that d*(f,id) <e. Then f is the
desired map into 2P\ {4| Int 4 # @}.

COROLLARY 1. With a: GxP =P, B: Gx2F =2F as above and ¢ >0
given, there is a map

f'2 2%/B = (2°\{[4]] Int4 # O})/B

such that d'(f’, id) <e.

Proof. The desired map is defined by f'([B]) = [f (B)], where f is the
map of the preceding theorem.

COROLLARY 2. Let a: G x P — P be a group action with G a finite group
and P a nondegenerate Peano continuum. Let B: G x2F —2F be the induced
action. Then 2F/B is homeomorphic to the Hilbert cube if and only if 2F/B
is an AR. '

Proof. Only the “if” part requires the proof. Let f: G x2F —2F be as
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in the corollary, and assume 2F/B is an AR. By Toruficzyk’s characterization
of the Hilbert cube [7], 2F/p is a Hilbert cube if the identity can be
approximated by maps with disjoint images. But the identity on 2F can be
approximated by maps of the form h, where

h([A]) = [{xeP| d(x, A) < t}]

and by maps of the form f’ as in Corollary 1. These maps have disjoint
images as required.

3. Induced finite group actions on the hyperspace of a finite graph. In this
section we restrict our attention to group actions of the form f: G x2' -2"
induced by a group action a: G xI' = TI', where G is a finite group and I''is a
finite, nondegenerate, connected graph. Note that I' is a nondegenerate
Peano continuum, so the results of Section 2 apply. Thus, we know that 27/8
is a Hilbert cube if it is an AR. The principal result of this section, Theorem
2, is that 27/B is an AR.

The proof of Theorem 2 is patterned after the proof of Lemma 4 in [8].
It uses Hanner’s theorem [2] that a space ¢-dominated by ANR’s for all
¢ >0 is an ANR (absolute neighborhood retract for metric spaces) and
Haver’s theorem [3] that a locally contractible countable union of finite-
dimensional compact metric spaces is an ANR.

Given a: G xI' =T, let d be a G-equivariant metric on I with respect
to a. Let ¢ be the minimum path length (with respect to d) metric on I'. Note
that ¢ is also G-equivariant with respect to a. Define e: 27 xI -2/, an
expansion homotopy, by

e(A,t) =4{xel o(x, A)<t}, Ae2l tel.

Then e is continuous and G-equnvanant with respect to B. Thus, e induces
the expansion homotopy e’: 27/8 xI —2'/B defined by

e'([4], 1) = [e(4, 1)].

For convenience we denote e(A4,t) and €'([4]),t) by e(A) and e;([4]),
respectively. We call a subset of I' in e(2" x(0, 1]) an expanded set.

LEmMMA 5. Let A€2’. Then

(@) e;4.(A) = e;(e,(A)) for every s, tel;

(b) A is an expanded set if and only if it has finitely many components,
each with positive diameter

(c) if A is an expanded set, then Bd A, the topological boundary of A in
I, is finite;

(d) if B is connected, B < A, A an expanded set, and

t <6 = min{g(x, y)| x, yeBd A4},

then e,(B) N A is connected.

5 — Colloquium Math. 56.1
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Proof. (a) The proof is elementary and is omitted.

(b) The “only if” part follows easily since the intersection of the expand-
ed set with each edge of I can have only linitely many components. For the
converse, assume A4 has only finitely many components, each with positive
diameter. Let |y;} be the edges of I', and let {yi} be the finite collection of
components of A Ny, that are not vertices of ;. (Note that if a vertex is a
component of 4Ny, then it is contained in a non-vertex component of
A nvy; for some j # i) Since A = () {y/} is a finite union of closed intervals
with positive length, it follows that 4 is an expanded set.

(c) If A is connected, then (Bd A) ny;, y; any edge of I', can have at most
two points. The result now follows since I has only finitely many edges and
any expanded set, by (b), has only finitely many components.

(d) Let yee,(B) nA. Choose a path t: I =TI of minimum length such
that 7(0) = xeB and t(1) = y. Note that |7| < t. (Here |t] denotes the length
of t.) Clearly, t(I) < ¢,(B). Also, since |t] < é and since x, y €A it follows that
17(I) c¢,(B)nA. Thus, y is joined in ¢,(B)NA to a point x in connected
B c ¢,(B)n A. The result follows.

We are now ready to state and prove the main result of this section.

THEOREM 2. Let a: G xI' =T be a group action with G a finite group
and I a finite, nondegenerate, connected graph. Let B: GxI' =TI be the
induced group action on the hyperspace 2'. Then the orbit space 27/ is an
AR, and hence (by Corollary 2) a Hilbert cube.

Proof. Let n: 2" —=2//B be the projection. We use the minimum path
length metric ¢ on I'. Without loss of generality we assume that the diameter
of I with respect to ¢ is no more than one. We let ¢* and ¢’ denote the
induced metrics on 2’ and 2/B, respectively (see Section 1). Since 27/B is
contractible, via the homotopy e, we need only to show that 2/ is an
ANR.

Let
E, =e(2"x{1/k}), E; =e(2"/B x{1/k}),

a0 a0
E=\E and E =\ E.
k=1 k=1

From (a) of Lemma 5 it is clear that E = e(2' x(0, 1]), the collection of
expanded sets in 2'. It is also clear that E' = n(E).

Let U be any open cover of 2// and let A be a Lebesgue number for U.
Consider e;: 2'/B — E', where ¢} is the composite

[4] (A, ) — € ([4], A).

Let i: E' —=2'/B be the inclusion. The map ([4], ) —e€;([A]) defines a
homotopy from the identity on 2'/B to ioe) which is limited by U. Thus,
E' - 2!/ is a homotopy domination. By a theorem of Hanner [2], 2//8 is an
ANR if E' is an ANR.
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Consider
E = \J E.
k=1

Each E,, being a closed subspace of 27/, is a compact metric space. It is
also finite-dimensional by the arguments of Section 5 in [5]. Thus, E' is a
countable union of finite-dimensional compact metric spaces. By a theorem
of Haver [3], E’' is an ANR if it is locally contractible.
Let [A] €U, an open set in E'. If [A] =[I'], choose ¢ > 0 such that ¢
<1 and
N ={[Ble2"/p| ¢'([A], [B]) <e} = U.
Then €'(N xI) < U, so that €'|(N xI) contracts N inside U.
If [A] #[I'], choose go =1, g4, ..., 9,€G such that if 4, =g; A,
{gdl geGl =1{g:41 i=0,1,...,r}
and such that A; # A4; if i #j. Choose n > 0 such that
{Be2'] ¢*(4;, By<n}nEca '(U), i=0,1,..,r
By (c) of Lemma S, |) Bd A4, is finite. Thus, we may choose
i=1
y < min {19 r” (1/2)0*('41’ Aj)a (I/S)Q(xs y)l i #J’
x and y two distinct points in () Bd 4;}.
i=1

1

Note that 3y is less than g¢(x, y) for any distinct points x and y in
U Bde,(4)).
i=1
Let W, = {B€E| o*(B, 4;) <7y}. Then W, is an open subset of E, and
W,nW,=0Q if i #j. Define ¢;:" W, xI =2 by
¢l’ (B, t) = eZYt (B) ney (Al)

If B is connected, then, by (d) of Lemma 35, d),-.(B, t) is also connected. It
follows, by (b) of Lemma §, that ¢, (B, t) < E. This, together with the choice
of y <, insures that, in fact,

¢i: WixI -z~ (V).

We claim that ¢, is continuous. To see this let (C, s)eW. xI and let
¢ > 0 be given. Choose positive 4 < min |y, ¢/3]. Then, if ¢*(B, C) <J and
lt—s| <4, it is easy to see that '

e2'yt (B) < e2yt+6(c) < e2ys+e(c)°
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Now, let x e¢;(B, t). Choose c €C so that g(x, ¢) is a minimum, and let T be
a path with 7(0) = x and 7(1) = ¢ having minimum length. Since

X Eezw (B) C.eZyt +4 (C)’

Iz|, the length of 7, is no more than 2y+4d < 3y, which, in turn, is less than the
distance between distinct boundary points of e, (4,). Therefore, t(I) = e, (4).
If |7| <¢, then

o(x,c)<e, where ceCne,(4) < @;(C,s).
If |t) > ¢, choosing z et (I) such that g(x, z) =¢, we have
0(z, ¢) < (2ys+¢e)—e = 2ys,
so that ze¢;(C, s). In either case x €e,(¢;(C, s)). It follows that

¢i(Ba t) < ee(¢i (Cs S))
By symmetry,

¢i (C’ S) < €, (¢| (Bs t)),
so o*(#:(B, t), ¢:(C, 5)) <e. Thus, ¢; is continuous.
Let
w=U W

i=1

and define ¢: WxI —»n~'(U) by ¢|{(W;xI) =¢;. Then ¢; is well-defined,
continuous, and, as is easily checked, G-equivariant with respect to . Thus,
¢ induces a continuous map ¢’: n(W)xI = U defined by

¢'"“[B], 1) = [$(B, 1)].
Since 7 is an open map, n(W) is an open neighborhood of [A4]. Clearly,

¢(([(B), 0))=[B] and ¢(([B], 1) = [e,(4)].

Thus ¢’ contracts n(W) inside U.
Thus, E’ is locally contractible as required.
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