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Introduction. Quadratic form schemes were introduced by Cordes in [4].
Cordes considers a group g with —1eg and a set of subgroups {X,}.q.
which satisfy the following two conditions: ae X, and be X, iff —1-aeX_,,
for any a, beg. If k is a field, then the group g corresponds to k*/k*? and X,
can be thought of as a value set for the quadratic form (1, a). However, this
definition admits schemes for which there exists no corresponding field (cf.
the Remark after Definition 1.1). In this paper we consider schemes satisfying
a third additional condition: D(a, b, c¢) = D(b, a, c) for any a, b, ceg (where
D(a, b, ¢) = U a-X,). We do not know whether all these schemes cor-

xeb-X
respond to someuﬁelds (P 1283). In [14] it was shown that all schemes with
[g:R] <16 (where R = {aeg:D(l, —a)=g} denotes the radical of a
scheme) are realized by fields. Here we prove this for any scheme with u
> 1[g:R] and [g:R] < .

In Sections 1-3 we give the basic information about quadratic form
schemes, sets of elements represented by forms, and equivalent forms. We
introduce the notion of equivalent schemes and invariants of schemes simi-
larly as in case of fields. In turns out that many theorems holding in the
theory of quadratic forms over fields are also true in case of quadratic form
schemes (in the sense of our definition).

The main part of this paper is Section 4 where we consider a scheme
with a non-trivial radical and we prove that each such scheme can be split
into the product of two‘schemes: S, having a trivial radical (i.e, R(S,) = {1})
and §, with R(S,) =g(S,). The exact statement of the result is given in
Theorem 4.7.

In the last section we classify all schemes with u > g/2 and q < . In
case of fields this is done by Cordes in [5], but he does not prove the
existence of the corresponding fields with s < 2.

1. Quadratic form schemes. Let g be an elementary 2-group with
distinguished element —1eg. For every aeg the product —1-a will be
written as —a. Let d be any mapping from g into the set G of all subgroups
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of g. The triplet (g, —1, d) will be denoted by S. An n-tuple ¢ = (a,, ..., a,),
a;eg, is saild to be a form (over S) of dimension dime =n and with
determinant det¢o = a, ... a,. For forms (a), (a, b), and (a, ..., a,) we write

DS(a) = {a}9 DS(a, b) = a'd(ab)a
Dg(ay, ..., a,) = U Dg(ay, x) for n> 2.

xeDgl(ay,....ay)

The set Dg(¢p) (or, simply, D(¢)) is said to be the set of elements of
g represented by the form ¢ (over S). If aeDg(p), we also write ¢ xa
(or ¢ x a). ' s

L.1. Definition. S = (g, —1, d) is said to be a quadratic form scheme
(or, simply, a scheme) if it satisfies the following conditions:

C,: aeD(1, a) for any aeg.

C,: aeD(1,b)<> —beD(1, —a) for any a, beg.

C;: D(a, b,c)=D(b, a, c) for any a, b, ceg.

Remark. We observe that C, and C, are independent. We show that
C, and C, do not imply C,. Let g be an elementary 2-group with F,-basis
ta, b, ¢} and define

d1)={1, -1}, d(a)=1{1,a,b,ab}, db)={1,b},
d(ab) = {1, ab}, d(-1)=g,
d(—a)= {1, —a}, d(-b)={1, —a, —b, ab},
d(—ab)={1, —a, b, —ab}.
Clearly, S = (g, —1, d) satisfies C, and C,. We show that S does not satisfy
C;. We have
D(,b,)= (U D(1,x)={1,b, —b, —a, ab}.

xeD(b,b)

Analogously,
Db,1,b)= U Db, x)=1{1,b, —b}.

xeD(1,b)
Hence D(1, b, b) # D(b, 1, b) and C; does not hold for S.

1.2. Example. Let k be a field of characteristic different from 2 and let
d, (a) denote the subgroup of g(k) consisting of elements represented by the
form (1, a). Then S (k) = {g(k), —k*?, d,) is a quadratic form scheme. It will
be called the scheme of the field k.

13. CorOLLARY. For any a, b, a;, bjeg,i=1,...,n,j=1,...,m, we have
(1) D(a, b) = D(b, a);

(i) D(a, —a) =g;

(i) D(ay, ..., a,) < D(ay, ..., a, by, ..., b,);
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(iv) heD(ay, ..., a,)=D(b,, ..., b,, b)=D(by, ..., by, a,, ..., a,);
(v) D(aa,, ...,aa,)=a"D(a,, ..., a,);

(vi) D(1, —a)nD(1, —b) = D(1, —ab).

The proof is trivial.

14. LEemma. If S, is the symmetric group on {1,...,n}, c€S,, and
a, ..., a,€g, then D(a,, ..., a,) = D(a,y, -, Ggm)-

Proof. For n =2, 3 we get the equality by C; and Corollary 1.3 (i). Let
n-> 4 and suppose the lemma is true for all forms of dimension n—1. Now,
since S, is generated by transpositions (i, i+ 1), we may assume that €S, is
a transposition (i, i+1). We have two cases.

If 6(1) =1, then by induction we get

D(ala--', an)= . U D(al’x)= U .D(aa(l)’ x)
xeD(az,....a,,) xeD(aa(z)....,adn))
= D(a,(l), ceey a,(,,,).

Ifo(1)# 1, theno(1) =2, 6(2)=1, and o(k) =k for k=3, ..., n It is
sufficient to prove that

D(a,, ..., a,) < D(a,, a,, a;, -.., a,).

Let ce D(ay, ..., a,). Then there exists an element xe D(a,, ..., a,) such that
ceD(a,, x). Similarly, there exists y = D(as, ..., a,) such that xeD(a,, y).
Hence

ceD(ay, x) = DP ) D(a,, z2) = D(a,, a,, y) = D(a,, a,, y)
ZE az.y
= U D(a27 W).
weD(ay,y)
Now, D(a,y, y) < D(ay, as, ..., a,) (by Corollary 1.3 (iv)); hence

ce U D(a,, w) = D(a,, a,, as, ..., a,)
wel(ay,a3,...,.a))

and the lemma is proved.

For any forms ¢ = (a,, ..., a,) and Y = (b,, ..., b,) over S we define the
(orthogonal) sum

(pl'/’ =(al’ ceey Ay, bl’ cecy bm)
and the (tensor) product
QY =bypL ... Lb,o,

where by = (ba,, ..., ba,). If y =(1, ..., 1) is a form of dimension n, then the
form @y =@ L ... L ¢ will be denoted by nx ¢.

1.5. CoroLLARY. If aeD(¢) and be D(y), then
D@, b)cD(peLly) and abeD(pQVy).
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Proof. Write ¢ =(ay, ..., a,) and y = (b,, ..., b,). By Corollary 1.3 (iv)
and Lemma 14 we get

D(a,b) < D(a, b,, ..., b,)
=D(by, ..., by, a) = D(by, ..., by, ay, ..., a,) = D(p L)

Next we use the induction. If m = 1, then abe D(¢ ®y) by Corollary 1.3 (v).
Let m> 2 and beD(b,, ..., b,). Then there exists xe D(b,, ..., b,) such that
beD(b,, x); thus axeD(¢p® (b,, ..., b,)). But ab,eD(a, by, ..., a,b,); hence
abeaD(b,, x) = D(p®Y).

1.6. THEOREM. For any forms ¢ and y over S we have
D(p Ly)=U (D(x, y): xeD(9), ye D(¥)}.

Proof. If ceD(ay, ..., a,, by, ..., b,), then there exists xe D(a,, ..., a,,
by, ..., b,) such that ce D(a,, x). Using induction on n, we get xe D(w, 2)
for some weD(ay, ..., a,), zeD(b,, ..., b,). We have now
CED(al,X)CD(al,W, Z)C U D(Z, y)C U D(Z, y)9
yeD(ay,w) yeD(ay,....ap)
and hence ce D(y/, z) for some y'e D(¢), ze D(y). The converse is trivial.
To simplify the notation we write

Ds(n) = Ds(nx(1)) and Dg(c0) = gl Ds(n)

and, motivated by the case of schemes of fields, we classify the schemes as
follows:

1.7. Definition. The scheme § is said to be non-real if —1¢eD(c0), and
S is said to be formally real otherwise.

1.8. Definition. A subgroup P of the group g is said to be an ordering
of the scheme S = (g, —1, d) if it satisfies the following conditions:

(1) [g: P1=12

(2) D(a, b) < P for any a, beP.

We denote by r(S) the cardinality of the set of orderings of the scheme S.

1.9. CoroLLARY. For any ordering P we have
(i) —1¢P, '

(ii) a4, ..., a,eP=>D(a,y,...,a,) <P,
(iii) D(o0) = P.

1.10. THEOREM. r(S) > 0 if and only if S is a formally real scheme.

Proof. If there is an ordering P, then S is formally real by Corol-
lary 1.9. To prove the converse observe first that if S is a formally real sche-
me, then D(w0) & g. Let R be the family of all non-trivial subgroups P of
the group g such that D(a, b) = P for any a, be P. Obviously, D(o0)e R and
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R is partially ordered by inclusion. If L is a chain in R, then | P belongs
Pel

to R. By Zorn’s lemma, there exists a maximal element P, of the family R.
We prove that P, is an ordering of the scheme S. Since —1¢ P,, it is suffi-
cient to show that for any ceg we have ce P, or —ce P,. Let

P = ) D(x,cy).

x,yePq
Then Py < P’ and ceP.
Case 1. —1eP'. Then there exist x, ye P, such that (x, cy)x —1.
Hence (1, x) * —yc, and so —yceP,. It follows that —ceP,.
Case 2. —1¢P. We shall prove that P'eR. Let a, be P, (x, cy) x a,
and (x', cy’) = b for some x, x, y, y'€ Py. Then xx', yy', xy’ and x’y belong to
Py. Hence

D(xx', yy)uD(xy', x'y) = P,.
We have
abe D((x, cy)®(x', cy)) = D(xx, cyx’, exy’, yy')
= (D(w, cz): weD(xx', yy), ze D(xy', yx')}
c U {D(w,cz): w,zePy} = P

and we conclude that P’ is a non-trivial subgroup of g. It remains to show
that D(w, z) = P’ for any w, ze P'. We have

D(w, z) =« D(x, cy, X', cy’) = | (D(t, cu): t, ue Py} < P

Thus we have proved that P'eR. Since P, — P’ and P, is maximal, we get
P’ = P,. Hence ce P, and the theorem is proved.

1.11. THEOREM. If r(S) > O, then the intersection o(S) of all orderings of
the scheme S is equal to D(o0).

Proof. It is clear that D(o) co(S). Let aeg and suppose that
a¢ D(c0). We shall prove that a¢o(S). Let R be a family of non-trivial
subgroups of g satisfying the following conditions:

(i) —aeP for any PeR,

(ii) D(c, d) = P for any PeR and ¢, deP. _

Similarly as in the proof of the preceding theorem we show that
P =){D(x, —ay): x, yeD(0)} belongs to R. Hence R is non-empty.
Moreover, if P, denotes a maximal element of R, then P, is an ordering of S
and —aeP,. Hence a¢ P,, so a¢a(S), and the theorem is proved.

Now, let S =<g, —1,d) be any formally real scheme, acg, and let
P be an ordering of the scheme S. We define sgnp(a) =1 if aeP, and
sgnp(a) = —1 otherwise. It is clear that sgnp: g —» | +1} is the group homo-
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morphism. Further, we define

Sgnp(a,, ..., a,) = Z sgnp(a;)
i=1

for any form (a,, ..., a,) over S and observe that
dim ¢ = Sgn, ¢ (mod 2)

and
Sgnpe Ly = Sgnp o +Sgnpy

for any forms ¢ and y over S.

2. Equivalent forms.

2.1. Definition. For any forms ¢ =(a,, ..., a,) and Y = (b,, ..., b,) (of
the same dimension) over S we say that ¢ and Y are simply equivalent if

1. a, = b, for n=1,

2. a,a, =b,b, and b, eD(a,, a,) for n =2,

3. there exist i,je{l,...,n}, i#j, such that the forms (a;, a) and
(b;, b;) are simply equivalent and a, = b, k # i, j, for n > 3.

We say that ¢ and y are equivalent (¢ =) if there exists a finite
sequence of forms ¢ = @, @, ..., ¢, =y such that ¢; and ¢, are simply
equivalent for i=0,1,..., k—1.

The relation = is an equivalence relation. The equivalence class of the
form ¢ =(ay, ..., a,) will be denoted by {a,, ..., a,>.

2.2. CoroLLARY. For any a, a,, ..., a,eg and for any forms ¢, ¢’ and

¥, Y’ over S we have
(l) (a’ _a) g(la _1),

(i) oeS,=(ay, ..., ay) = (Ag1ys -- -5 Ao(m);

(i) o=y and ¢’ =Y’ Llo'=y Ly and ¢@¢' =y RY’;

(iv) @ =y =Sgnp@ = Sgnpy for any ordering P over S.

23. THEOREM. If @ =, then D(p) = D(¥).

Proof. This is trivial if n =:dime =dimy = 1. If n > 1, we can as-
sume that ¢ and ¢ are simply equivalent. Let ¢ =(a, b), ¥ =(c, d),
ceD(a, b), and ab = cd. We shall prove that D(a, b) = D(c, d). If xe D(a, b),
then (1, ab) ~ ax, ac. Hence (1, cd) =(1, ab) ~ cx and (c, d) * x. By sym-
metry we get D(c,d) < D(a, b). For n> 2, we use Lemma 14 and The-
orem 1.6.

24. LemMa, If beD(ay, ..., a,), then there exist b,, ..., b,eg such that
(ay,...,a,)=(b, by, ..., b,).

Proof. We use induction on n. For n=1, 2 this is obvious. Let
beD(ay, ..., a,), n= 3. Then there exists an element ce D(a,, ..., a,) such
that beD(a,, c). Now, by induction, there exist cj,...,c, such that
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(azy --., ay) =(c, c3, ..., c,) and, by Corollary 2.2, we get

(ala ceey an) = (bv bala C, C3,y ..., Cn)a
as required.

2S. Definition. The form ¢ is said to be isotropic if either ¢ = (1, —1)
or there exists a form ¥ such that ¢ = (1, —1) L y. Otherwise ¢ is said to be
anisotropic.

2.6. THEOREM. The following statements are equivalent:

(1) @ is isotropic;

(ii) if @ = @, L @,, then there exists an element xeg such that ¢, ~ x
and ¢, =~ —X.

We say that ¢ satisfies (#) if for any ¢, and ¢, such that ¢ = ¢, L @,
there exists xeg such that ¢, ~ x and ¢, * —x. First we prove

LemMA. If Y and 1 are simply equivalent and y satisfies (x), then T also
satisfies (*).

Proof. If dimy =dimt =2 then ¥ =(a, —a) for aeg. Hence
Y = (b, —b), beg, and 1 satisfies (»).

Now assume that dimy = dimt > 2. By Lemma 14, it is sufficient to
consider 4 cases:

1.y =(ay,...,a,a,b),t=(ay,...a,cd),(ab)=(d,, =(a,...
teco an)’ T, = (C9 d),

2. y=(y,...., %, ..., 4y, 0,b), t=(ay,....,q,...,a, c,d), (a,b)=
(c,d), 1y =(ay, ..., &), T2 =(Ax+1,---»ap, ¢, d), 1 Lk <n-—1;

3. y=@y,...,a,a,b),1=(ay,...,a,c,d),(a b) =(cd), 1, =(ay,...
cees Ay, ©), T2 =(d);

4 ¢y =(ay,...,a,a,b, by, ..., b,), T=(ay,...,a, C,d, by, ..., by),
(a,b)=(c, ), 1, =(ay,...,a,,0), 1=, by, ..., b,).

In the first case we take Y, =(a,,...,a, and ¥, =(a, b). Since ¥
satisfies (»), there exists xeg such that y, ~ x and Yy, * —x. But D(a, b)
= D(c, d). Hence t; ~ x and 7, ® —x. In cases 24 the proof is similar.

Proof of Theorem 2.6. (i))=(i) follows from Lemma 24 and
Corollary 2.2.

(i) =(ii). We observe that the forms (1, —1) and (1, —1,ay, ..., a,)
satisfy (). Moreover, ¢, Lo, =(1, —1) or ¢, Lo, =(1, -1, a,, ..., a,).
Using the Lemma we infer that ¢, L ¢, satisfies ().

2.7. THEOREM. Let ¢ =(ay, ..., a,) be any form of dimension greater
than or equal to 2 and let a, beg. If o®(a, b) is isotropic, then either

(P®(a, b) E(l, —19 la _1)
or there exist c,deg such that ¢ =(c,d) Ly for some form  and
(C, d)®(aa b) E(l, _19 19 _1)'

lle
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Proof. If o®(a, b) = ap L by is isotropic, then, by Theorem 2.6, there
exists an element xeg such that ap ~ x and bp * —x. For n =2 we get
a(ay, a;) = (x, xa, a;), b(a,, a)) =(—x, —xa,ay),

and

(P®(a, b) = (xa xa, aZ)J-(—xa —Xa, a2) g(l’ —la 19 _1)

For n> 2 we have ¢ =(ax, b,, ..., b,) and ¢ ~ —bx. Hence there exists
deD(b,, ..., b,) such that (ax, d) ~ —bx. We have

¢ =(ax,d, ds, ..., d,) for some d,,...,d,eg

and

(ax, d®(a, b) = (x, ad) L (abx, bd)
= (—abx, —bd) L (abx, bd) =(1, —1, 1, —1),
as required.

28. CoroLLARY. If ¢ =(a;y,...,a,), n=2, aeg, and e®(1, a) is iso-
tropic, then

Q= al(I’ _bl)-l- v -Lar(]-’ —br)-L(zl, EEE) zk)9

where b,e D(1, a), and either k =0 (ie, @ =a,(1, —b,) L ... La, (1, —b,)
ork=1ork 22 and (z,, ..., 2,)R(1, a) is anisotropic.
Proof. Applying Theorem 2.7 we get

o =(c,dy) L ... L(c,d)L(zy, ..., 2),

where (¢, d)®(1,a)=(1, —1,1, —1) and k=0 or k=1 or k=2 and
(z1, .-+, Z)®(1, a) is anisotropic. Moreover, by Theorem 2.6, c;(1, a) ~ x and
di(1,a) ~ —x, and so (1,a) = —c;d;. Putting b, = —c;d; we obtain the
required representation of ¢. B

29. Definition. The form ®& (1, a), a;eg will be called an n-fold
i=1

Pfister form and denoted by ((a,, ..., a,)). The equivalence class of the form
((ays ..., a,)) will be denoted by {(ay, ..., a,)).

2.10. LemMma. For any a,, a,, yeg we have

@) (1, a)) = y = {<ay, a;)) = Kay, ar1y));

(ii) (a1, a5) = y= {<ay, a)) = Ly, 4y a)).

The proof is the same as in [10], Proposition 1.3, p. 276.

For any n-fold Pfister form ¢ =((a,, ..., a,), we define the form ¢’
inductively: if ¢ =(1,a), then ¢ =(a), and ¢’ =(ay,...,a,-))) L
la,(a,,...,a,-,) for n>1. Clearly, ¢ =(1) L ¢". '
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2.11. Tueorem. If ((ay,....a))=(1) L ¢’ and ¢’ = b, then there exist
elements b,, ..., byeg such that {{ay, ..., a,>» = {{b, by, ..., by ).

Proof. For n=1 we have ¢’ =(a); hence b=a,. Let n>2 and
t=(a,..., a,—y)). Then ¢’ =1 la,r and, by Theorem 1.6, there exist
elements ye D(z’) and xe D(t) such that (y, a,x) = b. Further, there exists
xoeD(t’) such that (1, x¢) ® x and we continue similarly as in [10],
Proposition 1.5, Case 2, p. 279.

For any form ¢ we write G(¢) = {aeg: ap = ¢}. We observe that G(¢)
is a group and if ¢ x 1, then G(¢) < D(¢).

2.12. CoroLLARY. For any n-fold Pfister form,

(i) if ¢ is isotropic, then ¢ =2""1'x(1, —1);

(ii) D(p) = G(¢p) and D(¢p) is a subgroup of g;

(ili) the sets D(2*) and D(c0) are groups.

Proofs of (i) and (ii) are analogous as for Corollaries 16 and 17 in [10],
p. 279-280 (—1eD(¢’) by Theorem 2.6); (iii) follows from (ii).

3. Equivalent schemes and their invariants. Let S={g, —1,d) be a

quadratic form scheme. We introduce now the notation used in the case of
fields:

q(S) =1gl, 92(S) = [Ds(1, 1),
m(S) is the number of equivalence classes of 2-fold Pfister forms,

min{k: —1eDg(k)} if S is a non-real scheme,
0 if S is a formally real scheme.

s(5) =

If S is the scheme of a field F, then m(S) = m(F) is the number of

quaternion algebras over F and s(S) = s(F) is the “Stufe” of F. If ¢ is a form

over S and nx ¢ = k x(1, —1) for some natural n and &, then ¢ is said to be
a torsion form. We have also the scheme counterpart of the u-invariant:

u(S) = max |dim¢: ¢ is an anisotropic and torsion form over S!.
3.1. KNESER'S LEMMA. If S is non-real, acg, and ¢ is an anisotropic form

over S, then D(¢) & D(p L(a)).

This can be proved similarly as Lemma 4.5 in [10], p. 317, using c e D(i)
instead of e?+ ... +¢?.

3.2. LemMMA. If S is a non-real scheme, then any form ¢ over S is a torsion
Sform. If S is a formally real scheme and ¢ is a torsion form over S, then dim ¢
is even.

Proof. If s =5(S) < o0, then 2sx(1) s x(1, —1) by Corollary 2.12.
Hence

2sx(a) =sx(a, —a)=sx(1, —1) for any aeg.
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We have
28)((01, teey an)g .L 28)((0,)%"8)((1, —1)
i=1

and (a,, ..., a,) is a torsion form. If S is formally real, then Sgn, ¢ = 0 for
any ordering P over S (by Corollary 2.2), and so dim¢ is even.

3.3. CoroLLARY. If S is non-real and q(S) < o, then s(S) < u(S) < q(9).
If S is a formally real scheme, then u(S) is even.

34. TueorReM. If S is a non-real scheme, then s(S) is a power of 2.
Proof. Let s =5(S) and 2* <s < 2**!. Then the form 2* x(1) L 2* x(1)
= 2¥*1 x(1) is isotropic. Thus there exists ceg such that 2*x(1) * +c (by
Theorem 2.6). Now from Corollary 2.12 we get 2*x(1) * —1 and, con-
sequently, s = 2*.
35. TueoreM. If s(S) = 2°° < oo, then
[Ds(2*Y): Dg(2)] =20, i=0,..., 5.

3.6. CoroLLARY. If 5(S) = 2° < 0, q; = q;(S), and q = q(S), then

230(80— 1)/2 280(SO+ 1)/2 <a.

qg2<q and <q

The proofs of Theorem 3.5 and Corollary 3.6 are analogous as the proof
of Satz 18 in [12].
Finally, we define the radical R(S) of a scheme S as

R(S) = laeg: D(1, —a) =g}.

From Corollary 1.3 (vi) we infer that R(S) is a subgroup of g. Moreover,
R(S)=N{D(, a): acg!.

Now, let S =g, —1,d) and §' =g, —1',d’) be any form schemes.

3.7. Definition. The form schemes S and S’ are said to ‘be equivalent
(S = §) if there exists a group isomorphism f: g — g’ such that f(—1)= —1’
and f (d(a)) = d'(f (a)) for any aeg. Such an isomorphism f will be called an
equivalence map. If for the scheme S there is a field k such that S = S(k), then
we say that the scheme S is realized by the field k.

We observe that the fields k and k' are equivalent with respect to
quadratic forms (or Witt rings W (k) and W (k') are isomorphic ([2], Theorem
2.3)) if and only if S(k) = S(k').

38. CoroLLARY. If S = §', then q(S) = q(S"), 92 (S) = q2(S"), m(S) = m(S’),

s(S) = s(S"), u(S) = u(S’), r(S) =r(S’), and R(S") =f(R(S)), where f: g > g’ is
the corresponding equivalence map.

In [9] Kula defined the product of schemes and power schemes. For
two schemes S, ={g,, —1,,d,) and S, = {g,, —1,,d,> the product is
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defined to be
S =8,M8, =<g1 xg3, (—1,, —15), d),

where d(a, b) = d(a) xd(b) < g, xg,. Fundamental properties of the product
operation on the schemes are summarized in the following two theorems (due
to Kula [9]):

39. THEOREM. S is a quadratic form scheme. Moreover,

(i) Ds((ay, by), -, (an, by)) = Ds, (ay, --., ) X Ds, (by, ..., b,) for any
a;€9:, bjegy;

(i) (a1, by), ..., (an, b)) = ((c1, dy), ..., (cn» d,)) Over S if and only if
(ay, ..., a) =(cy, ..., ¢c,) over S; and (by,...,b,)=(d,,...,d,) over S,
(ai’ cjegl’ bb dl€gz);

(ii1) q(S) = q(S,)q(S2), 92(S) = q2(51)q2(S2), and R(S) = R(S;) x R(S,);

@iv) if m(S;) < 00, i =1, 2, then m(S) = m(S;)m(S,);

(v) s(5) =max {s(Sy), i =1, 2} and r(S) =r(S;)+r(S2);

(vi) if uo = max {u(Sy), i=1, 2}, then

uo—1 if uy is odd and S is formally real,
U otherwise.

u(S)={

3.10. THEOREM. If the schemes S, and S, are realized by the fields k, and
k,, then S = S,MS, is also realized by some field k.

Now, let § = <g, —1, d) be any quadratic form scheme. We follow the
example of the formal power series field in defining the power scheme of S.
For a 2-element group {1,t} we define

g‘=gx{1, t}’

_|d(@ if aeg,a# -1,
d‘(a)_{gt ifa=_1,

&) ={1,at} if aeg.
Kula proved also the following theorem (cf. [9]):

3.11. TueoreM. S' = {¢', —1, d')> is a quadratic form scheme. If ¢ and y
are anisotropic forms over S, then ¢ and y are anisotropic forms over S' and

(i) Dy (9) = Ds(¢) and Dy (¢ L ty) = Ds(p)utDs(¥);
(i) if @ = over S, then @ = over S*; if o =y and ¢’ =y’ over S,
then ¢ Lto' =y Lty over §'
Moreover, :
(i) q(S") = 29(S) and

if 1# —1
A

29,(8) f1=-1
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(iv) s(8") = s(S), u(S) = 2u(S), and r(S') = 2r(S);
(v) if q(S) < o0, then
m(S) =m(S)—1+) [g: Ds(1, x)].
xeg

3.12. Definition. The scheme S’ is said to be a power scheme if there
exists a scheme S such that S’ = §".

3.13. THEOREM. Let S =<{g, —1,d)> and q(S) > 2. The following state-
ments are equivalent:

(i) S is a power scheme;

(ii) there exists aeg, a # +1, such that |Dg(1, a)| = |Dg(1, —a)| = 2;

(iii) there exists a subgroup h — g such that |Dg(1, a)l = 2 for any a¢h;

(iv) there exists a subgroup h — g such that [g: h] =2 and [D(1, a)| = 2
for any a # h.

Proof. (i) =(ij) and (iii) =(iv) are trivial. (ii)=>(iii) can be proved
analogously as Theorem 1 in [1].

(iv)=(i). Let g = hx {1, t} and |Dg(1, a)] =2 for any a¢h. Since q > 2,
we get —1eh. Observe that if aeh, a# —1, then Dg(1, a) = h. Hence
we have Dg(a, b) = h for any a,beh, a# —b. By induction we obtain
Dg(a,, ..., a,) = h for any ay,..., a,eh such that (a;,...,a,) is an an-
isotropic form over S. It follows that So = (h, —1,d,) is a quadratic
form scheme, where dg(a) = Dg(l, a), aeh. It is trivial that S = S; and
the theorem is proved.

3.14. CorOLLARY. If S is non-real and q(S) > 2, then S is a power scheme
if and only if there exists acg, a # +1, such that |Dg(1, a)| = 2.

Proof. Let |[D(1, a)] = 2, a # +1. First suppose that the form s x(1) is
universal. We write k = min {i: —aeD(i x(1))} and observe that k < s. Since
—aeD(k x(1)), there exists be D((k—1) x(1)) such that —aeD(1, b). Hence
—beD(1, a). Now k—1 < s implies b # —1. Moreover, —a¢ D ((k—1) x(1)).
Consequently, b # —a, and so |D(1, a)l > 3, a contradiction. Thus s x(1) is
not universal and —1eD(s x(1)), and we continue the proof similarly as for
Theorem 1 in [5].

From Theorem 3.13 and [9], [13] we get

3.15. CoroLLARY. If S = S(k) for a field k, then S' =S(k((t). If S is
realized by a field, then S is also realized by a field.

4. Schemes with non-trivial radical. Let g be an elementary 2-group. We
define d(a) = g for any aeg. Obviously, for any fixed element of g denoted
by —1, the triple S = (g, —1, d) is a quadratic form scheme and R(S) = g.
Such a scheme will be called radical. Observe that for a radical scheme S we
have s(S) = 1if —1 =1 and s(S) = 2 otherwise. In this section we shall show
that any scheme S with a non-trivial radical can be split into the product of
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two schemes S = §,MS, with S, having a trivial radical (ie, |R(S) =1)
and with S, radical in the above-mentioned sense.

4.1. LEMMA. Let B be a power of 2 or an infinite cardinal number. There
exist fields k& and k& such that

(i) q(k}) = q(k3) = B;

(i) R(kf) =g(Kf), i=1,2;

(iii) s(k%) =1 and s(k8) = 2.

Proof. For g =2" n> 1, such fields can be found in [2] and [15]. Let
p be an infinite cardinal number, and k any field with |k| = B (cf. [7]). We
denote by k the algebraic closure of k and put kf = k(x), the rational
function field. It is obvious that s(kf) =s(k) =1 and, by the Tsen-Lang
theorem ([10], p. 296), R(kf) = g(kf). We prove that q(kf) = B. Since the set
B ={(x—c)k¥?: cek} is a basis for the group g(kf), we have |g(kf)| = |B]
= |k| = B and k4 satisfies (i)«(iii). Now, by Theorem 3.10, there exists k4 such
that S (k) = S(kf)MS(F,) and k% satisfies (i)<iii) by Theorem 3.9.

4.2. Definition. The scheme S?=S(kf), i=1,2 will be called a
radical scheme of cardinality B.

43. CorROLLARY. Let S = (g, —1, d>, |g| > 1 be a radical scheme and let
B=q(S). Then S =S4 or S =S8 according as s(S) =1 or s(S)=2.

44. LemMma. For any scheme S =<{g, —1,d), if a,,...,a,eqg and
ry, ..., ra€R(S) for n > 2, then Dg(a,r,, ..., a,r,) = Ds(a,, ..., a,).

This can be proved as in [3] by using Corollary 1.3 (vi).

Now, let S = (g, —1, d) be any quadratic form scheme, R its radical,
and f: g —g/R the canonical homomorphism. We define a mapping dg on
the group g/R with values in the family of subgroups of g/R by putting
dg(aR) = f (d(a)). By Lemma 4.4, the equality f(a) = f(b) implies d(a) = d(b)
for any a, beg. Hence dg is well defined.

45. THEOREM. For any scheme S = (g, —1,d)>, S/R ={g/R, —R, dg) is
a quadratic form scheme. Moreover,

(i) Dsr(a; R, ..., a,R) =f(Ds(ay, ..., a,) for any a,, ..., a,eg;
(ii)) |R(S/R)| =1 and
1 if —1eR(S),
S/R) =
OR=10 ¥ 1ers
Proof. It is sufficient to show (i). For n =1, 2 this is trivial. If n > 2,
then (i) can be proved by using induction.

4.6. LEMMA. For any scheme S = (g, —1, d)> with s(S) = 2, the schemes
SMS4 and SNS4 are equivalent.

Proof. Suppose $% = {g,, —1,,d,), 84 = {g,, —1,,d,), and assume
that B; is any basis of the group g,, B, = {—1,} U {¢;}is is a basis of g,
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and B={—1}u{a;};y is a basis of the group g. Since |g,| = |g,| = B, we
have |B,| = |B,|. We choose f: B, — B, to be any bijective mapping and let
bo =f(—13), b; =f(c;), iel. Then the sets

By ={(1, by), (—1, 1,)} U {(1, b)lieg v {(aj’ 1)} jer

and
’2 = {(1’ - 12)’ (_ l’ 12)} v {(1’ ci)}iel v {(aj’ 12)}jd

are bases of the groups g xg, and g xg,, respectively. We observe that the
set

.B'{ = I(1, bo), (" 1, bo)} Y {(l, bi)}iel Q {(aj’ 11)}Jal

is also a basis of the group g xg,. We define the group isomorphism f:
g Xg; — g xg, such that

f(lv —12)=(1’b0)’ ](_1’ 12)=(_19 b0)9
f(l’ C,-)=(1, bi)’ f(aj’ 12)=(aja 11)’ iEIa ]GJ

It is easy to see that f is an equivalence map. Hence SMS, and SIS, are
equivalent.

4.7. THEOREM. Let S = {g, —1,d)> be a quadratic form scheme with
radical R(S) of cardinality B # 1. Let S/R = {g/R, —R, dg) and let S¢ be
radical schemes of cardinality B. Then the scheme S decomposes into the
product schemes as follows:

(i) S = S/RMSE =~ S/RMNSE if —1¢R(S);

(i) S =S/RMNSE if —1eR(S) and 5(S) = 2;

(iii) S = S/RMSE if s(S) = 1.

Proof. First observe that S, = (R, —1,, dy)>, where R = R(S), do(r)
= R for any reR and the scheme

. _{—1 if —1eR(S),
T0T) 1 if —1¢R(S)

is a quadratic form scheme. Moreover, S, =S4 for —1eR, s> 1, and
So = S4 otherwise.

Let' g’ be a subgroup of g such that g =g’ xR. If —1¢R, we assume
that —1eg. If f: g >g/R is the canonical homomorphism, then f=f,:
g —¢g/R is a group isomorphism. We define a mapping h: g/R xR —g by
h(@R,r)=f"'(aR)'r, acg, reR. Clearly, h is also an isomorphism.
Moreover, we can show that

d(h(aR, r)) = h(dg (aR) x do (1))

for any aeg, reR, and h(—R, —1y) = —1.
Hence h is an equivalence map for the schemes S/RIMS, and §.
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48. THEOREM. For any schemes S and S’ with radicals R and R’, respect-
ively, S =8’ if and only if S/R = S'/R’, |R] =|R’|, and 5(S) =1<s(S) = 1.
Proof. Sufficiency. From Theorem 4.5 (i) we ha\fe

—1€R<>Dgg(R, R) = g/R <> Dg, . (R, R) = g'/R' <> —1'eR’.

This and the equivalence s(S) = 1 <>s(§) = 1 imply that S, = S,, where
S, and S; have been defined in the proof of Theorem 4.7. We have

S = S/RMS, = S/R'MS, = §'.

Necessity. If h: g —» g’ is an equivalence map for the schemes S and §',
then h(R) = R’. This implies that the mapping h: S/R — S’/R’ defined by
h(aR) = h(a)- R’ is an equivalence map establishing the equivalence of
schemes S/R and S'/R’ and the theorem is proved.

49. Remark. Theorems 4.7 and 4.8 can be applied in the classification
of schemes with a radical of fixed cardinality. For example, let X be the set
of all schemes with ¢ =a and R = {1}. We put

X, ={SeX:s58)=1}, X,={SeX: s(S)>1}.
Then the set of all schemes such that |[R| =f and [g: R] =a is
X' =XjvXiuX,,
where
X, ={SNS%: SeX,}, X{={SNs%: SeX,},
X, ={SNs4: SeX,).

By Theorem 4.8 we see that all schemes of X’ are pairwise non-equivalent.
Moreover, it follows from the results of Kula [9] that if all schemes of X are
realized by fields, then all schemes of X’ are also realized by fields. (For

a < 16 this can be found in [14]. Other applications of Theorems 4.7 and 4.8
will be given in the next section.)

5. Non-real schemes with u > g/2. In this section we give the classifi-
cation of non-real schemes with ¢ < o0 and u > ¢/2 and we prove that all
these schemes are realized by fields. First we prove some auxiliary properties.

Let ¢ be any form with dim¢ > 2 and such that ¢®(1, 1) is isotropic.
Then from Corollary 2.8 we get

Q= al(la _bl)-L -Lau(l’ _bn)-L(zla X zk)’ a;, bi9 Z;€g,
where b;e D(1, 1) and either k=0 or k=1 or k> 2 and (z,, ..., z)®A(1, 1)

is anisotropic. We refer to such an equivalence of forms as to a f-
decomposition of ¢.
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5.1. THEOREM. Let ¢ be an anisotropic form with dim¢ =2 and let
¢o®(1, 1) be isotropic. If ¢ ~a,(1, —by)) L ... La,(1, —b,) L(z4,...,2) is
the B-decomposition of @, then the following sets are mutually disjoint:

1. D(ay(1, —=by) L ... La,(1, =b), D(zy, ..., 2), —D(zy, ..., z);

2. D(a,-l(l, -b)L...L1la (1, b)) D i. a1, =by), 1<r<n

J#ig,..

The proof of Theorem 5.1 is the same as in [6], p. 290.

5.2. THEOREM. If S ={g, —1,d) is a non-real and non-power scheme
with ¢ > 4 (i.e., D(a, b) > 4 for any a, beg) and ¢ is an anisotropic form of
dimension n =dim ¢ > 2, then |D(¢p) = 2n

Proof. For q = 4 this is trivial and we assume that g > 8.

Step 1. If s >4, then |[D(1, 1, 1)| > |D(1, 1)|+2 = s+2 (cf. [6], Lemma
3.2). By Kneser's lemma, there exists xeD(1, 1, I\D(1, 1), ie, (1, y) = x
for some yeD(1,1)\{1}. We have x#xy, xy¢D(1,1), and
xyeD(1, y) = D(1, 1, 1). We get the second inequality by Theorem 3.5.

Step 2. [ID(¢)| = 6 for ¢ =(1, a, b). We observe that it is sufficient to
prove N

(*) there exist x, yeD(a, b) such that D(1, x) # D(1, y).

Ifa=b=1, then s>4 and |[D(1,1,1)] > 6. Let a=b and (1, 1) # a.
For s =2 we have D(1, a) # D(1, —a), and if s > 4, then D(1, a) # D(1, ¢)
for some ce D(1, 1), ¢ # 1. Finally, if 1, a, b are three different elements of g,
then D(1, a) # D(1, b) or (1, a, b) = (1, a, a) and (*) holds.

Step 3. Using Theorem 5.1, the previous steps, and Lemma 8 in [14],
we can prove Theorem 5.2 (for any n > 4) similarly as Theorem 3.5 in [6].

53. CorROLLARY. Let S be a non-real and non-power scheme with
4 qg<oo and uz>=q/2. If ¢ is a u-dimensional anisotropic form and
=a,(l, —by) L ... La,(1, —b,) L(z4, ..., 2) is the B-decomposition of ¢,
then k=0 and n —q/4 (ie, u=q/2).
5.4. THEOREM. Let S be a non-real scheme with 4 < q=2"< 0. Then
u=gq if and only if

S=S(Fa((ty) .- (ta=1))) or S =S(Fs((t))--- (ta-1)):

Proof. If n>2 and u =g, then S is a power scheme and we use
induction on n. The converse is trivial.

55. LEMMA. Let S be a non-real scheme with s <2 and u = q/2, q < ©.
Then |R| =2 or S is a power scheme.
The proof of the lemma is the same as the proof of Theorems 4-6 in [5].

5.6. THEOREM. Let S be a non-real scheme with u =q/2 < oo0. If S is a
non-power scheme, then it is equivalent to one of the schemes
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S(Fs)MS(Fs), S(F5)MS(F3), S(Fs)nS(Fs ((tl))'--- ((tn)))a
S(F3)MS(Fs((ty) ... ((tn)), SFINS(F3((ty) ... ((tn), S(Q2)

and S is realized by a field. If S is a power scheme, then it is realized by an
iterated power series extension of a field k, where S(k) is one of the above
schemes.

Proof. For q(S) <4 the result is trivial. Let q(S)=>8 and let S be
a non-power scheme. If s(S) < 2, then |R(S) =2, u(S/R) = q(S/R) and we
use Theorems 4.7 and 54. Let s >4 and let ¢ be a u-dimensional aniso-
tropic form and, by scaling and Corollary 5.3, we may assume that
o=(1, =b)L ... La,(1, —b,), n=q/4 >4, is the p-decomposition of ¢.
From Theorem 5.1 we get b;=b,, i=2,...,n. Hence n=2 and S
= S(Q,). If S is a power scheme, we use induction since S = S and u(S,)
= 14(So)-

5.7. Remark. Theorems 4.7, 54, and 5.6 can be used to the classifi-
cation of all non-real schemes with |R| >1 and u > 4[g: R], [¢g: R] < o©.

Then S = S/RMS?, i =1, 2, and S/R is one of the schemes in Theorems 5.4
and 5.6. Clearly, all these schemes are realized by fields.
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