COLLOQUIUM MATHEMATICUM

VOL. XXII 1971 FASC. 2

SOME REMARKS ON THE NUMBER
OF DIFFERENT TRIPLE SYSTEMS OF STEINER

BY
B. ROKOWSKA (WROCLAW)

1. Definitions and results. Let § be a set of n elements. A family
R consisting of three-element subsets of § such that every pair of elements
of § is contained in exactly one set from R is called a triple system on S.
For the sake of shortness, a triple system will be called simply a system.

It is known that a necessary and sufficient condition for the existence
of a system is » =1 or 3 (mod 6). There is an open question how many
non-isomorphic systems exist for a given set 8. It is known that forn = 7
and n = 9 there exist one system only, for n = 13 exactly 2, for n = 15
exactly 80, and for » > 13 at least 2.

If for a system R on S and for a system R, on 8, we have §, = S
and R, c R, then we say that R, is a subsystem of R on S,.

If 8 can be put in the form

S=Q& (p >1)

with disjoint §,,...,8,, and |8, =... =8, >3, and if on §; there
exists a subsystem R; of R, then we say that R is decomposed into sub-
systems R, on §;. Otherwise R is called ¢ndecomposable.

Let f(n) be the number of non-isomorphic systems on S, where
|8| = n. By f*(n) we denote the number of non-isomorphic systems R
on 8 with |8| = n, which satisfy the following condition:

(*) R does mot contain any subsystem R, on any S, with |S,] = 1 mod 6.

Now let R be a system on 8, where |§| = d* and let R* be a system
on 8% where |8*| =d. By P(R, R*) we shall denote a system on T,
where |T| = d-d*, constructed as follows (cf. [2]): '

Arrange elements of T is a matrix

0 1 odt—1
da* 14+ d* .. 2d%—1
(saﬂ)=

(d—1)d* 14(d--1)@* ... dd*—1
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Denote the rows of the matrix by 8,, ..., S; and the columns by
8}, ..., 8. Constructing on every row system R, we get systems R,, ..., B
on 8,,...,8;. Similarly constructing on every column system R*, we
get systems R}, ..., Rj, on 85, ..., S;.. Let B be the family of all triples
{Saps Scay S¢s} With @ # ¢ and b # d, where ¢ and f are such that the triples
{816 8145 817} and {851, Se1, S.1} belong to B, and R, respectively.

The family

d a*
P(R,R') =BUU R, VU E;
i=1 i=1
is a triple system on T (cf. [2]).
The main result of this paper is the following
THEOREM. For n =9 (mod 18) we have

s> s (5)+2,

where d runs over all divisors of n exceeding 1 and congruent to unity mod 6.
The proof of theorem follows immediately from lemmas of section
2 (for the convenience of the reader, proofs of lemmas and theorem are
postponed to section 3).
The paper is completed with section 4 containing some remarks on
a, possibility of strengthening the theorem.

2. Lemmas.

LEMMA 1. Let |8| = n, where n =3 (mod 6). Then there exists an
indecomposable system R on S which satisfies (*).

LeEMMA 2. Let |S| = n, where n = 9 (mod 18). Then there exists a system
R on 8 which is decomposable into subsystems R, on S; with |8;| = n/3,
and which satisfies (*).

LEMMA 3. The triple system P (R, R*) is decomposable into subsystems
isomorphic to R* and into subsystems isomorphic to R.

LeEMMA 4. If |S| = 1 (mod 6), system R on 8§ satisfies (+), and P(R, R*)
contains a subsystem R, on Sy with |S;] = |8*|, then R} is isomorphic to R*.

LEMMA 5. If the system P(R, R*) on T is isomorphic to P(R, R*)
(where both R and R are on 8, |8| =d* = n/d, and d =1 (mod 6)), and
if R satisfies (*), then R and B are isomorphic.

LEMMA 6. If a system R on S satisfies (*), then the system P(R, R")
on T does mot contain any subsystem Ry on Sy, where |S;| =1 (mod 6)
and |8;| > |8*|. '

3. Proofs.

Proof of lemma 1. Let § = {0, 1, ..., 6k+2}. Putting 4, = {0, 1,
eeoy 2k}, Ay = {2k+1, ...,4k+1}, Ay = {4k+2, ..., 6k+ 2} we shall con-
struct on § three families B,, B,, B; consisting of triples. Namely:



TRIPLE SYSTEMS OF STEINER 319

B, = {{z, v, 2}: v+ y+1 =2z (mod(2k+1));  +# y; 2, yeA, for some
15 2€Aiyymoas); ¥r Y # —1 (mod(2k+1))};

B, = {{w,y,2}: y = —1 (mod(2k+1)); =
w,yed; for some i; zeAy,y)moas);

B, = {{w, 2+ 2k+1, o+ 4k+2}: zed,).

First we show that R = B; U B, U By is a system on S. Take x, yeA,.
If #,y # —1(mod(2k-+1)), then the pair (v, y) lies in a triple from B,
or it lies in a triple from B,. If #e¢A; and, yeA; with ¢ # j, then in the
case # =y (mod(2k+1)) the pair (x, y) lies in a triple from By, and in
the case # % y (mod (2k+1)) and #, y # —1 (mod(2k+-1)) it lies in a triple
from B,. Finally, if # = —1 (mod(2k+1)), then the pair (z,y) lies in
a triple from B, provided j—+¢ =1 (mod 3) or, otherwise, in a triple
from B,.

To show that every pair is contained in at most one triple from
R, it is enough to compute the cardinalities of B;, B, and B,. As it is
easy to check, |B,| = 3k(2k—1), |B,| = 6k and |B;| = 2k+1, whence
By |+ 1B, |+ |Bs| = IR = n(n—1)/6, as needed.

Now we show that system R on 8 satisfies (*). Let B, on S,, where
|8y| = 1 (mod 6), be a subsystem of E. Clearly, 8, can be a subset of
no 4; and of no union 4; U 4;. Thus |8, n 4;| 0 for j =1,2,3. Let
IS N A, =6, |Sqg N Ay] =F,|8 NAz] =g. We shall show that f<e
<g</f. '

Let yeA; N 8,. Since there are ¢—1 pairs z,, x with , # r,e4, N S,,
we have e—1 distinct triples {z,, z, y}eR, with yed, N 8,. If y = =z,
(mod (2k+1)), ¥ must be an element of such'a triple, hence f = e—1.
And if y = 2, (mod(2k+1)), then f = e. Therefore f< e. Proofs of the
remaining inequalities are analogous and we come to the equalitye = f = g.

Hence 8, is divisible by 3 and so |S,| = 1 (mod 6). Finally, we shall
show that the system R on § is indecomposable. Assume to the contrary
that R is decomposed into some subsystems. Let S, be one of 8,’s. From
the tquality ¢ = f = g we infer that if xed, N §,, then there is an
yed; NS, and a zeA; N 8, such that # =y = z (mod (2%k+1)). To focus
our attention, we may assume that S, contains 0. Hence if zeAd, N 8,
and # % —1 (mod(2k+1)), then x+1,x+2,...,2% belong to S, and,
consequently, 1,2, ... are also in §,. Hence all elements of 8 are in 8,.

Remarks. 1. It is easy to prove that in the case n = 9 (mod 18)
the system R on S contains a subsystem R, on S, for which

il

(22 +1) (mod (2k+1));

Sy = {a: aeS A a = 2(mod3)}.

2. If 8§ =n» =1 (mod 6), then there exists a system on S, which
does not contain any subsystem at all. Such are the triple systems con-
structed by Skolem in [1] for an arbitrary » of this kind.
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Proof of lemma2. Let § = {0,1,...,18%+ 8}. Putting 4, = {0, 1,
.,6k+2}, A, = {6k+3,...,12k+ 5}, and 43 = {12k+6,...,18k- 8},
we construct two families B, and B, of triples of S. Namely, set

B, = {{x,y,2}: 2+y =22(mod(6k+3)); @, yed;;2€A; 1ymoas; ® Y},
B, = {{z,x+6k+3, v+12k+6}: weA,}.

This is a construction of Skolem [1].

The proof that R = B; U B, is a system on § is given in [1]. Now
we prove that it is decomposable into subsystems R; on 8§;, where
|8;] =n/3. Let

S; ={a:ae8 A a=0 (mod 3)},

={a:ae8 A a =1 (mod 3)},
={a:aeS A a =2 (mod 3)}.

If {x,y, 2}eB; and 2, y = 4(mod3), then z = i(mod 3). If {x, y, 2} eB,
and ¢ = ¢(mod3), then y and z are congruent to ¢(mod3).

Now we show that R satisfies (*). Let R, on 8, be a subsystem of B
such that 8, = 1 (mod6). It is evident that |4, N 8| #0for k =1, 2, 3.
Let |SonA,| =€, |SgnA4,| =f and |8, n 43] =¢g. We show that
f<e<g<f{.

Let xyeA; N S,. Since there are e—1 different pairs (x,, ), where
rved, N8y, ® # x,, we have ¢e—1 different triples {x,, v, y} such that
yed, N S,. If every y # x, (mod (6% 3)) is an element of such a triple,
then f = e¢—1, and if y = &, (mod (6k+ 3)), then f = e, whence f<e.
Proofs of the remaining inequalities are analogous and in this way we
come to the equality ¢ = f — g. Hence 3 divides |S,| and so |S,| 1
(mod 6).

Proof of lemma 3. The proof follows directly from the construction
of P(R, R*) (see section 1).

Proof of lemma 4. Let us construct P(R, R*) as in 1 with T
={0,1,...,18%k+8}. Put n = |T| = d-d*, where d =1 (mod 6) and
d > 1. Assume that a system R on 8 satisfies (*). The existence of such
a system R on 8 follows from lemmas 1 and 2.

Now let P(R, R*) contain a subsystem R; on S; with |S;| = |8*] = d.
Assuming that there exists an index 7, such that ¢ = IS NSyl >2 we
have ¢ > 3 and this implies that for no 4 there is |S; N S} | = 1. In faect,
if |8; n8;| # 0 and, for some k, {3101, 81y S} € Ry, then at least ¢ ele-
ments from the row S, belong to S; and ¢ elements from the row §; belong
to S;. Hence, for some i, there is |S; N S;] = 0, and for some other 4,
|8; N 83| = 3. Choose an ¢ such that the latter inequality holds and let
8; n 8y = 8,,. Clearly, either |S;)| =3 or a system R, (i.e. subsystem
of R;) can be constructed on the set S;,. Consequently, |8;,] =3 (mod 6).
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Thus
d
1851 = > 18; 1 8;] =3 (mod 6) %1 (mod 6),
izl
contrary to the assumption of lemma 4. Hence |S; N S;| = 1 for every

¢t =1,...,d. For any indices b, d,f we have {8g, S, 8./} <P (R, R*) if
and only if {s,,, 8.1, 8.} < E;. Since |S; N 85| = 1, for any a there is exactly
one b = b(a) such that s, eS; and so the one to one correspondence
Sa1 > Sapey (1 < a < d) determjnes an isomorphism between R; and Rj.

Proof of lemma 5. Since P(R, R*) and P(R, R*) are isomorphic,
P(R, R*) can be decomposed into subsystems isomorphic to R. Let the
system R, on S, be one of them.

If, for some i, |8, N 8;| =1, then this equality holds for every
i=1,...,d4". Hence, repeating the last part of the preceding proof,
we infer that B, and R, and so R and R are isomorphic in this case.

We now prove that the inequality |8, N 8| > 2 can occur for no .
For suppose that it occurs for some 7. In such a case we infer as in the
proof of lemma 4, that for every ¢ either |S, N S}| >3 or |S, n §;| = 0.
Now let S, N 8}, = 8},

Hence a system R}, (a subsystem of R; and R,) can be constructed
on the set S},. Since R}, is a subsystem of the system R,, which is iso-
morphic with R, and since the only subsystems R, of R are such that
18,] = 3 (mod 6), |S},| = 0 (mod 3).

Furthermore, since P(R, R*) can be decomposed into subsystems
isomorphic with R (let it be P,,..., P; on sets Q,,...,@Q;), there exist
for each aeT, ¢ and j, such that aeS};, where S;; = @; N S;. Hence for
each aeS] there exists j, such that a¢Sj; and 8} is a union of disjoint
sets Sj;. On each of those sets one can construct a subsystem of P;.
In view of the isomorphism between P; and R, and of the hypothesis of
lemrha it follows that |8};| = 3 (mod 6), and so that |8}| = d = 3 (mod 6),
contrary to the assumption d =1 (mod 6).

Proof of lemma 6. If, for some i, |[S; N §;| = 1, then this equality
holds for every ¢ =1,...,d, and |S;| = |8*|. We now prove that the
inequality |S; N §;| > 2 cannot occur for any ¢ In fact, suppose that it
occurs for some 7. Hence, as in the proof of lemma 4, we infer that,
or every i, either |S; N S;|>3 or |8 N S;| =0. But if |S; n ;| >3
for some i, then [S§ N §;| = 0 (mod 3), whence |S;| = 0 (mod 3).

Proof of the theorem. In virtue of lemmas 1 and 2 there exists
a system R on S, where |§| = d* = 9 (mod 18) satisfying (*). From lemmas
4 and 5 we infer that, having fixed R in P(R, R*) and letting R* assume
distinet values, we receive for each d/n (d = 1 (mod 6)) so many non-iso-
morphic systems on a set of cardinality », how many such systems exist

11 — Colloquium Mathematicum XXII, 2
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on a set of cardinality d, i.e. f(d). And having fixed R* with condition (*)
and letting R assume distinct values, we receive so many non-isomorphic
systems on a set of cardinality », how many such systems satisfying (*)
exist on a set of cardinality n/d, i.e. f*(n/d). Hence f(n) > f(d)-f*(n/d).
And if, in addition, we let d assume distinet values, then, taking yet
lemma 6 into consideration we come to the inequality

fm)= D) f(d)f*(n]d).
d

Lemmas 1,2 and 3 allow to prove that, besides systems P(R, R*)
constructed in the manner described in 1, there exists on a set of cardinal-
ity » at least 2 more systems non-isomorphic to each other and non-
isomorphic to any of P(R, B*). In fact, systems R of lemmas 1 and
2 are evidently non-isomorphic and satisfy (*). From lemma 3 we infer that
system P(R, R*) contains a subsystem isomorphic with R*, and so a sub-
system an a set of cardinality d = 1 (mod 6), whence it follows that
P(R, R*) does not satisfy (*). Hence

f) = D) f(@)-f*(n)d)+2.
d

4. Conjecture. We conjecture that the estimation given in the theorem
can be strengthened considerably to the following f(n) > n-)) f(d)-f*(n/d).
a

This conjecture is based upon the following modification of the construction
of P(R, R*) from 1.
Arrange the elements of the set T into the matrix

0 1 . d¥—1
d* 144" v 24 —1

 (@—1)d" 14(d—1)d" ... dd*—1

Divide T into subsets §; and §; as'in 1. On sets 8, and S construct
systems R, and R], respectively, in a way that R, satisfies (*) otherwise
arbitrary. On the other §,’s construct systems as follows: choose some
a of them (0 < a < d—1) and construct systems on them which satisfy (*)
and are all isomorphic to each other, but not isomorphic to the system
R, on 8;; on the remaining 8,’s construct systems R, isomorphic to R,.

Similarly, on §;’s construct b (0 < b< d*—1) systems R; non-iso-
morphic to R} and d*—b—1 systems isomorphic to R;. Finally add to
all those systems the set of triples B from 1. Since ¢ =0,1,...,d—1
and b =0,1,...,d"—1, we obtain d-d* = n systems P(R, R*).

To prove the above conjecture one has only to show that all these
systems are pairwise non-isomorphic. The author was unable to do this.
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