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Introduction. The theorem of the title is the well-known result due
to Cohen ([2], Theorem 2, p. 29), which states that each ideal of a com-
mutative ring B with identity is finitely generated (i.e. R is Noetherian)
if each prime ideal of E is finitely generated (see also [3], p. 5, and [5], p. 8).
This theorem rests on the facts that the set of ideals of a ring that are
not finitely generated, ordered under the inclusion relation, is an inductive
set and that an ideal maximal with respect to the property of being not
finitely generated is prime. The main purpose of the present note is to
strengthen Cohen’s theorem by restricting the ambit of its statement
to a proper subset of the prime spectrum of E. The method is to impose
a condition of finite character on those prime ideals which are possible
candidates for being maximal elements in the set of ideals of R having
no finite basis. As might be expected, this family of prime ideals includes
each maximal ideal of R but does not, in general, include every prime
ideal of R. By characterizing this family of prime ideals explicitly, informa-
tion is given of where to seek for ideals which have no finite basis, since
each such ideal is contained in an ideal which is maximal with respect
to this property ([6], p. 72). In addition, as an application of Theorem 1,
it is shown, when R has only a finite number of maximal ideals, that
several simple equivalent Noetherian conditions can be formulated on R;
in particular, the hypotheses of Theorem (31.8) in [5], p. 110, can be
weakened and a simpler proof given (i.e. without using the notion of
completion) of the stronger result. Throughout this paper R will denote
a commutative ring with identity having maximal ideals {m;},x.

1. If @ is an ideal of R, then the ideal () (@a+m}) with ¢ e X is
n=1

called the closure of @ with respect to the m;-adic topology; @ is said to
have a prime closure in case its closure is a prime ideal of R. If a is equal
to its closure with respect to the m,-adic topology, then it is said to be
a closed ideal with respect to the m;-adic topology. This terminology is
used below.
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THEOREM 1. R i8 a Noetherian ring if, for all i € X, the following
prime tdeals of R have finite bases:

(1) my;

(2) prime closures of finitely generated ideals with respect to the m,-adic
topology.

Proof. Let us suppose that R is not a Noetherian ring and that P
is a maximal (prime) element in the set of ideals of R having no finite
basis. Let h denote the natural homomorphism of R onto B = R/P and
let 4 be a non-zero ideal of B. Then h~!(4) = A is an ideal of R properly
containing P and so, by the maximal character of P, A has a finite basis.
But h(h~'(4)) = 4 = h(A), which means that 4 has a finite basis since
it is the homomorphic image of a finitely generated ideal. We deduce
that every non-zero ideal of R has a finite basis, i.e. B is a Noetherian
integral domain. Since R has an identity element, there is a maximal
ideal m,; containing the prime ideal P. Also, from the observation that
m,[Pm,; is a finitely generated (R/P)-module we see that m,/Pm,; itself
is a Noetherian module ([5], Theorem (3.5), p. 8). Therefore, P/Pm,,
being a submodule of m,;/Pm,, is also Noetherian. In that case P can be
finitely generated modulo Pm,, and so P = (p,, ..., p,) +Pm, for suitable
elements p,,...,p, of P. Accordingly, on using an inductive argument,
it follows that P = (p,, ..., p,) +Pm] for each positive integer n: thus

[=c]

P < (1 ---r 2 +m}).

n=1

On the other hand, since R is a Noetherian integral domain, we have
n"—":‘ = ((_))7
n=1

on using Krull’s intersection theorem ([6], p. 206), where m, corresponds
to m; under the natural homomorphism %, and we therefore infer that P
is a closed ideal with respect to the m,-adic topology. Accordingly,

ﬂl((pu vy D) MY < ﬂl(P+mZ-') =P
n= n=
with the result that

P = m((pl’ '--’p-)‘l’m?)’

n=1

which contradicts thé fact that P has no finite basis. We deduce that our

original assumption that R is not Noetherian is false and Theorem 1 is
proved.

In general, not every prime ideal of R is a member of the set of prime
ideals characterized in the statement of Theorem 1. For instance, if A
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denotes the ring of germs of indefinitely differentiable functions of a real
variable # in the neighbourhood of 0 ([1], p. 110), then A is a quasi-local
ring whose maximal ideal m is principal, being generated by the identity
map ¢: £ — 2. The intersection of all powers m" (n =1, 2,...) is the
ideal of germs all of whose derivatives vanish at 0. The ring A is non-
Noetherian because the ideal

Q=rjm"

is not zero, since it contains the non-zero germ of the function exp( —1/22%).
Since this germ is not nilpotent, let P be a prime ideal of A not containing it.
Then P must be strictly contained in @ and clearly cannot take the form

00

() (a+m") for any ideal @ of A. We note that in this case, i.e. where the

ne=l
maximal ideal m is principal, @ is the unique maximal element in the

set of ideals of A having no finite basis. For if § is such a maximal element,
then 8 is contained in all powers of m = (m,) say; since ze S < m'
with ¢ a positive integer implies that # = rm! with » € A and since m!
cannot be contained in 8, we have r € § ¢ m, and so z e m'*!. Conse-
quently, the conclusion follows by induction. On the other hand, as was
seen in the proof of Theorem 1, S is a closed ideal with respect to the
m-adic topology, and so S contains the ideal @: hence S = Q.

2. Hereafter we assume that the set X is finite, i.e. that R has only
a finite number of maximal ideals, and we let J be the Jacobson radical
of R. In Theorem (31.8) of [5], p. 110 (see also [4], p. 135), it is proved,

using a structure theorem of Cohen, that if (1) J* = (0) and if each maxi-
n=1

mal ideal m, has a finite basis, then R is Noetherian if every finitely gen-
erated ideal of R is closed with respect to the J-adic topology. The hypo-
theses of Theorem 1 permit us to strengthen Theorem (31.8) in [5] and to
give a simpler proof of the stronger result. In addition, several simple
equivalent Noetherian conditions can be formulated on R. Before stating
Theorem 2 we note the following observation which is used below. Namely,
that the closure ¢ of a particular ideal @ = (a,, ..., @;) of R be finitely
generated does not alone suffice, in general, to ensure that @ be a closed
ideal with respect to the J-adic topology: some additional restriction
is needed. For example, if R is quasi-local with the unique maximal ideal
m and if it is known that the images of the elements a,, ..., a, generate
the vector space ¢/cm over R/m, then the ideal @ is indeed closed. For
in this case we have ¢ = @+ e¢m, and so, in the residue class ring B = R/a,
¢ = ¢m. Consequently, ¢ = (0) on using Nakayama’s lemma ([1], Propo-
sition 2.6, p. 21), since ¢ has a finite basis. It follows that ¢ = @, and there-
fore a is a closed ideal.
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THEOREM 2: Let the ideals m, (i € X) and (| J" have finite bases.

ne=]

Then the following conditions on B are equivalent (closures are with respect
to the J-adic topology):

(1) Ewvery prime tdeal of R has a finile basis.

(2) R is Noetherian.

(3) R/a is Noetherian for every non-zero finitely generated ideal a of R.

(4) Every mon-zero finitely gemerated ideal of R i3 closed.

(5) The closures of mon-zero finitely generated ideals of R are finitely
generated. '

(6) Prime closures of non-zero finitely generated ideals of R are finitely
generated. ‘

Proof. (1) = (2) = (3) is straightforward. The implication (3)=(4)
follows from the intersection theorem ([6], p. 208, Theorem 19, Corollary),
and it is clear that (4) = (5) = (6). To establish that R is Noetherian from
condition (6) it will be sufficient, in view of the result E1.2 in [5], p. 203,
to prove that the localization of B at each maximal ideal is Noetherian.
Since the finite character of the closures, with respect to the J-adic topo-
logy, of finitely generated ideals contained in a maximal ideal of R is
preserved under the appropriate localization, it can be assumed that R
is quasi-local. In this case (6) = (2) follows at once by using Theorem 1.
This completes the proof of Theorem 2. ' ‘

Let R’ denote the completion of R with respect to the J-adic filtration.
For an ideal @ of R let aR'n R denote the contraction in R of the ideal
aR’' of R’ under the canonical homomorphism R — R’. A further simple
equivalent condition can be added to those in the statement of Theorem 2.
Namely:

(7) R/(aR’'nR) i8 Noetherian and aR'nR has a finite basis for every
Jfinitely generated non-zero ideal @ of R.

To see that R is Noetherian under condition (7) let ¢,, ..., ¢, (¢; € R)
be any finite basis for the ideal aR'n R and let P be a prime ideal of R
containing it., Then P/(aR'nR) is an ideal of R/(@R A R), and so has
a finite basis. Therefore, we can find elements g,.,, ..., ¢, of P such that

P =(Gry1s--+rqn) tOR'NR = (qy,...y q,)

and we deduce that every prime ideal containing aR'n R is finitely gen-
erated. But, if the element z is contained in aR’'n R and k is a positive
integer, then x € @+ J*R’, « being the limit in R’ of a sequence of elements
of a. Therefore, « is contained in (@ +J*R')NnR = a+ (J*R'nR)= a+J*
and it follows that # lies in the closure of a, i.e.

aR'nR < ((a+J").

n=1
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Thus a prime closure of @ has a finite basis. Since this is true for
every non-zero finitely generated ideal @, we deduce that (7) = (6).
On the other hand, if R is Noetherian, then conditions (3) and (7) coincide
since, in this case, aR'Nn R = a.
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